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ABSTRACT 

The theory and application of a new performance index, the 
Model PI ,  that brings engineering design specifications into the analyti- 
cal  design process  is developed. A parameter  optimization design pro-  
cedure is established that starts with practical  engineering specifications 
and uses  the Model P I  as a synthesis tool t o  obtain a satisfactory design. 
Although the techniques apply to  l inear  , t ime invariant, determinis t ic  
control sys tems in general ,  the thesis  is developed in the context of 
flight control sys tems in order  to  emphasize the relationship of rea l i s t ic  
design requirements  t o  the synthesis process.  The Model P I  represents  
a new cr i ter ion for approximating one dynamical sys tem by another, 
based on a novel geometrical  representation of l inear  autonomous sys tems.  
It is shown to  b e  a n  effective performance index in designing practical  s y s -  
tems  and is shown to be substantially m o r e  er'ficieni io ubt: ilridii a corn- 
parable model-referenced integral squared e r r o r  performance index. 
general  digital computer program for control sys tem design using the 
Model P I  is developed. 
flight control sys tem design examples. 

A 

Its usefulness is demonstrated by three  practical  

Some interesting developments in l inear  optimal control resulting 
The Model P I  is shown to pro-  f rom the Model PI theory a re  presented. 

vide a means of interpreting the s ta te  vector weighting mat r ix  in t e r m s  
of a model which the optimal sys tem w i l l  approach in a limiting case. 
An interestingly s imple solution of the l inear  optimal control synthesis 
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procedure using one root  square  locus is presented. 
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CHAPTER 1 

INTRODUCTION 

The rel iance on automatic flight control sys tems in aircraft 

has continued to  increase  s ince that first autopilot developed by 

Dr. E. A. Sper ry  only eleven yea r s  af ter  the his tor ic  flight of the 

Kitty Hawk ( 1 ) .  The advances in autopilot technology were  rather  

slow up to  the Second World W a r .  

sophisticated autopilots w e r e  available that adequately m e t  the re-  

quirements of the operational a i r c ra f t  a t  that  time. 

By the end of World W a r  I1 

The development of high-performance j e t  a i r c ra f t  brought zi 

Up to  whole new dimension to  flight control sys tem requirements.  

that  time autopilots were  designed mainly for  attitude and heading 

control. 

been designed into the bas ic  a i r f r ame .  It w a s  possible to  provide 

such heavy bas ic  damping that the c lass ic  textbook by Perkins  and 

Hage ( 2 )  states  that  the shor t  period modes are of very  little conse- 

quence in the flying qualities of airplanes.  

a lmost  entirely on their  static and long period character is t ics .  

the advent of j e t  t ransports  flying at high subsonic speeds and j e t  

f ighters flying a t  subsonic, transonic and supersonic  speeds,  the 

The des i red  stability and control charac te r i s t ics  had always 

They could be  designed 

Nith 

shor t  period" pitch dynamics and the Dutch r oll" dynamics be - 
came dominant factors  in  establishing adequate aircraft handling 

qualities. The aerodynamicists could no longer design sufficient 

damping into the basic a i r f r a m e  if they were  to  meet their  p r imary  

objective of providing high aerodynamic efficiency at the c ru i se  

flight conditions. Consequently , most  high -per f  or mance air craft 



had marginal  to  unacceptable handling qualities in some portion of 

their  flight envelope without a stability augmentation system. 

A simple,  fixed-gain pitch or  yaw damper may be  sufficient 

to  provide sat isfactory handling quali t ies in  many situations. 

for  severa l  reasons ,  stability augmentation and control sys tems have 

necessar i ly  become m o r e  complex. Mission requirements  have be -  

come m o r e  seve re ,  such  as a re -en t ry  f rom space (3 ) .  The vehicle 

response modes fo r  some  configurations like lifting bodies have be -  

come highly coupled (4). 

become extremely difficult, as in landing a VTOL at s teep approach 

angles under IFR (5). 
through transit ion to  c ru ise  flight requi res  a complete change in the 

type of control commands (6,  7). 
could be added to  this list. 

But, 

In some cases  the pilot control task has 

F o r  some VTOL aircraft, going f r o m  hover 

And certainly many.other examples 

In addition to  providing sat isfactory dynamics for  a pilot t o  

maneuver the high -performance a i r c ra f t  proficiently, the requi re  - 
ments for completely automatic flight contr ol under various situations 

have increased. 

all-weather conditions has  motivated the development of all -weather 

automatic approach and landing sys t ems  (8). 

system necessary  to couple with a landing aid presents  a complex 

multivariable design problem. 

with automatic c a r r i e r  landing sys tems and automatic f i r e  control 

systems.  

The des i r e  t o  operate commercial  a i rpo r t s  under' 

The flight control 

There  are s imi la r  design problems 

-. 
 he design process  for fiight controi sys'cerr~s L ~ s  become 

correspondingly m o r e  complex, lengthy and laborious by the con- 

ventional l inear  s e r v o  theory techniques (9 ,  10). Even with the aid 

of digital computers for  root  locus and Bode d iagram computations 

and automatic root  locus plotters,  these techniques a r e  r a the r  slow 

processes  when synthesizing complex multiloop and multiple input/ 

output systems.  This is mainly due to  their  t r ia l -and-er ror"  

nature and treating only one of severa l  design pa rame te r s  at a time. 

The i terations between the effects of severa l  pa rame te r s  and between 

inner and outer loop c losures  can become quite tedious. This is not 
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t o  say  that a n  experienced designer can not obtain excellent resu l t s  

with conventional techniques. 

effective flight control sys t ems  current ly  

the fact that they can. 

control sys tem engineers d e s i r e  more  syste  

and thus have been pursuing various analyti 

The many complex and yet extremely 

On the other hand i 

The pr imary  objective of this d i s s  

analytical design technique based on a new 

(Model PI) that is applicable to  l inear  flight control systems.  

recognized that the goal of mos t  r ea l  design problems is to  produce the 

s implest  design that meets  the performance specifications within ac- 

ceptable tolerances.  

start not with a mathematical  performance index but w.ith the general  

design requirements.  

the engineering specifications and the purely mathematical  optimization 

process .  In addition, the Model PI provides a new interpretation of 

quadratic cost  functionals used in optimal control theory that offers 

a physical bas i s  for  selection of the s ta te  vector weighting matrix. ' 

Model Performance Index" 

It is 

Therefore  the analytical design process  must  

The Model P I  is, used to bridge the gap between 

1. 1 Historical  Background of Analytical Design Methods 

Contemporary control sys tem design theory is placing an  

increasing emphasis on optimization of mathematical  functionals, 

sometimes called performance indices, that give a measu re  of the 

sys tem'  s performance relat ive to some reference.  

mus t  be  t raced  back ultimately to the independent, concurrent works 

of Wiener (1 1) in the United States and Kolmogoroff (1  2) in the 

U. S. S. R. which occurred in  the la te  1930' s and ear ly  1940' s. 

These were  the first formulations of fi l ter  design as a n  optimization 

problem. 

This concept 

The Wiener-Kolmogoroff problem is r e fe r r ed  to  as the 

free-configuration" problem in that it selects  the one f i l ter  f rom 

the class of all possible l inear  filters that minimizes the mean 

squared e r r o r  between the actual and des i red  signals. 

Hall (13) and Phillips (14) formulated the " fixed-configuration" or  

parameter  optimization problem using a mean  squared e r r o r  

Subsequently, 
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performance index. In this approach the designer se lec ts  the f i l ter  

or control sys tem configuration leaving charac te r i s t ic  frequencies,  

t ime constants and gains unspecified, t o  be  determined by the opti- 

mization process.  

mean  squared e r r o r  over a n  infinite t ime interval as a n  explicit,  

nonlinear function of the f r e e  design parameters .  

is then to se lec t  the f r e e  parameter  values that correspond to  a 

minimum point of this function. 

Phill ips derived a procedure for  evaluating the 

The design process  

A problem encountered in using the Hall-Phillips method w a s  

that the result ing design could allow excessive signal magnitudes 

within the sys tem that may exceed the range of assumed l inear i ty  or 

may even saturate .  Newton, Gould and Kaiser  (NGK) (15) proposed 

constraining any signal magnitude by adjoining the 'mean squared 

value of that signal to  the original performance index by a Lagrange 

multiplier. 

a function of the f r e e  design pa rame te r s  and the Lagrange multiplier 

using tabulated integrals.  

values of the f r e e  pa rame te r s  minimize this augmented performance 

index while requiring the signal magnitude constraint  to be satisfied. 

The augmented performance index can be evaluated as 

The design selected is the one in which the 

The servamechanism design problem w a s  formulated by 

Phillips and NGK in t e r m s  of the e r r o r  between the des i red  and 

actual responses.  

of the actual response f rom the des i red ,  s o  that minimizing it tends 

to  fo rce  the s y s t e m ' s  response t o  b e  similar to  the des i red  response.  

Thizs the performance index is a rneasure of the performance relat ive 

to some des i red  response that the designer  would specify fo r  each 

problem. This type is somet imes  called a model-referenced p e r -  

formance index. 

other r e sea rche r s  in which the performance index w a s  to  represent  

a n  absolute c r i te r ion  in itself. 

proposed to supposedly represent  optimum transient  response fo r  a 
step input. 

integral  of the absolute e r r o r  (IAE) 

absolute e r r o r  (ITAE) 

The performance index penalizes l a rge  deviations 

An al ternate  philosophy w a s  adopted by severa l  

Numerous performance indices were  

Several  proposed were  the integral  squared e r r o r  (ISE), 

integral  of time-multiplied 

and integral  of time-multiplied squa red -e r ro r  
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(ITSE) where in each case  the e r r o r  refers t o  the differ 

the instantaneous output and the steady state 

These and other criteria were  compared a n  

and Lathrop (16) with the conclusion that ITAE w a s  

This may well be  t rue  for  many s e r  echanisms , although 

there  is some disagreement  on that point { 17). 

tions defining a performance index relative t o  some model provides a 
necessary  flexibility that is missing in all of the so  called optimum 

transient  res pons e criteria. 

At this point, Aizerman (18) proposed a new concept for  

But in many applica- 

representing the des i red  sys tem response within a performance index. 

Rather than using the squared e r r o r  between the des i red  and actual 

responses  , Aizerman used a l inear  combination of the. squares  of 

the actual t ransient  response and its derivatives.  

ing of these squared variables in the performance index w a s  chosen s o  

that the absolute minimum value of the performance index would c o r -  

respond to  a sys tem design with a t ransient  response identical to  the 

des i red  response.  In general ,  the absolute minimum value can o d y  

be obtained if one has complete f reedom in selecting the closed-loop 

sys tem design. 

values a r e  usually constrained due to  pract ical  requirements ,  it is 

not usually possible to  obtain the des i red  response identically. 

However, minimizing Aizerman'  s performance index would tend to  

force  the s y s t e m ' s  respanse  to  b e  similar to the des i red  response,  

at least for  a cer ta in  class of sys tems and types of des i red  response.  

The objective is the same as fo r  .a model-referenced performance 

index, but the relat ive effectiveness of these two types in synthesizing 

control sys tems has  not been a s s e s s e d  to  the au tho r ' s  knowledge. 

Aizerman'  s concept could provide a significant computational advan- 

tage in the optimization process  over model-referenced performance 

indices in that the mode l ' s  response never en ters  the computational 

problem. 

l i t e ra ture  thus far. 

performance ind 

The relative weight- 

Since the feedback configuration and design parameter  

This point has  not been  verified or  even suggested in  the 

Although ra ther  l imited in application, Aizerman'  s 

represented  a distinctly different philosophy in 
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analytical design. 

Rekasius ( 19) recognized the potential of Aizerman'  s concept 

but noticed that it ser iously res t r ic ted  the type of models that could 

be  used f o r  the des i r ed  response.  

performance index that l if ted some of the res t r ic t ions  but not others.  

Several  ser ious l imitations remained that res t r ic ted  its application 

to  essentially academic examples which possibly accounts for  the 

apparent  lack of wide spread  knowledge of these performance indices. 

He proposed a somewhat improved 

Once a performance index is selected and a means fo r  evalu- 

ating it established, the problem of minimizing it with respec t  to  the 

f r e e  design parameters  remains.  

is generally not easy  and may be a formidable task. 

sible t o  obtain a d i r ec t  analytical solution except for  s imple academic 

examples. 

digital computer application w e r e  reviewed by Spang (20)  and Paie- 

wonsky (21) .  An at t ract ive feature  of digital computation is that 

general  a lgori thms can be wri t ten that apply to a wide var ie ty  of 

design problems. However, computational efficiency becomes an  irn- 

portant factor because the computational t imes  required for designing 

high order  sys t ems  with severa l  parameters  can be  excessive. 

computer mechanizations of essentially gradient techniques have been 

used successfully by Roberts ( 2 2 ) ,  Bingulac and Koktovic ( 2 3 ) ,  

Whitaker and Pot ter  (24) ,  and Whitaker, et. al. (4). The latter two 

works a r e  specific applications t o  flight control ' system design prob- 

lems .  

The parameter  optimization process  

It is seldom pos- 

Several  numerical  optimization techniques suitable for 

Analog 

In parallel  with these developments in fixed-configuration 

design techniques w a s  the rapidly developing theory of optimal control. 

The background and s ta tus  of this popular new field w e r e  recently 

reviewed by Paiewonsky (21)  and Athans (25).  

to  flight control sys tem synthesis is the special class of problems 

known as l inear  optimal control (26). 
flight control sys t em design problems (27  - 32). 

index is taken to  b e  some quadrat ic  functional of the s y s t e m ' s  state 

vector and the control effort. This forces  the solution to  produce a 

Of part icular  importance 

It has  been applied to severa l  

The performance 
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l inear  feedback control law.  

d i r ec t  procedure fo r  selecting the weighting ma t r i ces  used in the 

performance index so  they have been used as 

that are adjusted until a sat isfacto ined. The res 

ing design is quite often m o r e  complex than necessary  to satisfy the 

design specifications. 

state var iables  for feedback signals,  which is generally not t rue  in  

practice.  

using the theoretical  optimal solution as a guide. 

Unfortunately there  has  not been any 

Also it a s sumes  availability of all the sys t em 

Therefore  a simplified approximation is usually sought 

Modern control theory has thus produced severa l  new design 

tools based on minimizing a variety of performance indices. 

mos t  effective performance indices in the synthesis of l inear  flight 

control sys tems a r e  quadratic functionals that include, in some way, 

a model of the des i red  closed loop response. 

can be made in the a r e a s  of relating performance indices to  the en- 

gineering design specifications, improving the computational effi- 

ciency of analytical design processes ,  and providing general  digital 

computer program packages for  l inear  control sys tem synthesis. 

The 

Significant contributions 

1. 2 Thesis Scope and Organization 

The theory and application of a new performance index that 

brings engineering design specifications into the analytical design 

process  is developed. A design procedure is established that s t a r t s  

with practical  engineering specifications and uses  this Model PI as a 

synthesis tool r a the r  than a n  absolute criterion in itself. 

the techniques apply to  l inear ,  t ime invariant,  determinis t ic  control 

sys tems in general ,  the thesis is developed in  the context of flight 

control sys tems in order  to  emphasize the relationship of real is t ic  

design requirements  to  the synthesis process.  

is compared to  a model-referenced integral  squared e r r o r  design 

method in terms of the result ing design and the relat ive computational 

efficiency. 

design via parameter  optimization is developed. 

demonstrated by application to  flight control sys tem design examples. 

Althoiigh 

The Model PI method 

A general  digital computer program for  control sys tem 

Its usefulness is 
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The thesis  is organized s o  that practical  design problems are 
first  introduced (Chapter 2) ,  then the theory developed (Chapters 3 
and 4),  the general  design procedure established (Chapter 5 ) ,  and 

applied to flight control system design (Chapter 6). Some related 

topics on l inear  optimal control theory a r e  t reated in  Chapter 7. 

In Chapter 2 the requirements  of flight control sys tems a r e  

discussed in terms of the inner loop aircraft handling qualities and 

outer loops such as autopilots. Th  overall  prel iminary design pro-  

cess  is reviewed in terms of the necessary  s teps  to  produce a n  ac- 

ceptable design. 

synthesizing a sys tem to meet  engineering specifications is discussed. 

Then the ro le  of analytical design techniques in 

The Model PI theory is developed in Chapter 3 using a n  in te r -  

esting geometr ical  representat ion of l inear  autonomous sys tems.  

simple fo rm is derived first for  sys tems without z e r o s ,  and then is 

extended to sys tems with ze ros  and multivariable systems.  

Model PI is shown t o  be related t o  the works of Aizerman (18 )  and 

Rekasius (19) which are  crit ically reviewed. 

portant resu l t s  of Chapter 3 is presented at the end of the chapter . '  

A 

The 

A summary  of the im- 

Chapter 4 presents  a numerical  method for  minimizing the 

Model PI or any general  quadratic functional. The procedure devel- 

oped for  evaluating the performance index and its gradient can a l t e r -  

natively be  used with some other numerical  optimization algorithm 

the designer may prefer .  

* I n  Chapter 5 the design procedures for  using the Model PI 

a r e  established and demonstrated for  various fo rms  of engineering 

specifications. 

program, descr ibed in Appendix B y  for  control sys tem design via 

parameter  optimization. By formulating a model-referenced integral  

squared e r r o r  design method in s ta te-space f o r m  the same  computer 

program can be used for  that  method also.  

these two design techniques to  evaluate their  re la t ive effectiveness 

and computational efficiency. 

s t ra in ts  in either method are  presented. 

This i l lustrates  the use of a general  digital computer 

A comparison is made of 

Methods for  including parameter con- 
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Chapter 6 presents  severa l  flight control system applications 

A simple pitch damper  sys tem is of the Model PI design procedure.  

designed to provide sat isfactory longitudinal handling qualities. 

c om pl  ex la te  r a1 - d i r e  c t i onal s tab il it y augm entat i on s y s tern is des  ig ne d 

to  i l lustrate  the multivariable design methods. Finally, a pitch axis 

control system is designed for a VTOL a i rc raf t .  

emphasis is on meeting rea l i s t ic  type design specifications for flight 

control systems.  

A 

In each case  the 

Some interesting developments in l inear  optimal control 

theory resulting f rom the Model PI theory are  presented in Chapter 7. 

Only the single control regulator problem is considered. 

Model PI is shown to provide a n  interestingly s imple solution t o  the 

l inear  optimal Lontrol synthesis procedure using root square locus. 

A procedure is presented for computing a n  equivalent Model P I  for 

a general  quadratic functional. 

s ta te  vector weighting ma t r ix  in t e rms  of a model response which 

the system wi l l  approach in a limiting case. 

The 

This allows one to  interpret  the 

As a resu l t  of the r e s e a r c h  for  this disser ta t ion a general  ' 

digital computer program for  l inear  control sys tem design has been 

developed. A description of the program, i ts  operational format ,  

and a complete listing are  presented in Appendix B. 
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CHAPTER 2 

FLIGHT CONTROL SYSTEM DESIGN 

2. 1 Flight Control System Requirements and Design Specifications 

Flight control sys tems,  in the most  general  sense ,  consist  

of severa l  types of feedback loops for  accomplishing various mission 

and operatianal requirements.  F igure  '2- 1 depicts the functional a s  - 
pects of a general  flight control system for  a piloted flight vehicle. 

The pr imary  feedback loops of the flight control sys tem a r e  combined 

in f igure  2-1  into the two categories;  stabilization loops and auto- , 

guidance loops. The stabilization loops include pitch, rol l  and yaw 

dampers ,  automatic Mach t r im ,  s t ructural  mode suppression, etc. 

Such sys tems as autopilots and automatic approach and landing s y s -  

tems  a r e  indicated by the auto-guidance loops. 

contain vehicle motion senso r s ,  noise f i l t e rs ,  and some compensation 

networks. 

actuator sys tem,  which may b e  a complex feedback control sys tem 

itself. 

system f o r  the pilot controls because of heavily boosted or  completely 

i r revers ib le  control surface actuation systems.  

mode, the pilot uses  the control st ick force  as a pr imary  measu re  of 

The feedback loops 

A major  component of each loop is the control surface 

Most high-performance a i r c r a f t  requi re  an  ar t i f ic ia l  feel  

In the maneuvering 

his maneuvering command inputs. 

the feel  system. The pilot a l s o  closes the loop around the ent i re  flight 

control sys tem and a i r c ra f t  using various motion cues ,  external visual 

cues and pilot instrument  display as feedback sensors .  Thus the effect 

of the pilot as a n  element  in  the maneuvering loop plays a dominant 

ro le  in establishing the control sys tem requirements.  

This action closes a loop around 
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The design of a flight control sys tem presents  severa l  design 

problems,  each with different requirements  and correspondingly dif - 
f e ren t  specifications. 

the pilot maneuvering loop, the auto-guidance loops, and the c 

sur face  actuator systems.  

loop are  specified as aircraft handling qualities. 

m a r y  bas is  of the design specifications for  the stabilization loops and 

control feel  system. In auto-guidance modes of operation, the pilot 

is not in the active control loop, but monitors its operation and makes 

changes in the reference guidance commands, such as a des i red  head- 

ing change or reference holding altitude. 

for  auto-guidance loops, therefore ,  a r e  largely independent of the 

These can be  gross ly  categorized into design of 

The requirements  for  the maneuver 

These fo rm the p r i -  

The design specifications 

handling qualities requirements  and can be  given in severa l  forms  

m o r e  common to s tandard regulator or s e rvo  design problems. 

though the control surface actuator systems a r e  p a r t  of the other loops, 

they a r e  generally designed separately to their  own specifications and 

t reated in the design of the outer loops as fixed dynamic elements. 

These a r e  fa i r ly  s tandard servomechanism type design problems. 

Al- 

' 

In designing flight control sys tems the engineer is  faced with 

the various common forms of specifications as well as a special  form 

based on a i r c ra f t  handling qualities. 

knowledge of the types of design specifications involved in order  t o  

t r e a t  this subject f rom a rea l i s t ic  viewpoint. 

c ra f t  handling qualities c r i t e r i a  a r e  presented in the following section 

and discussed in relationship to  the maneuvering loop design problem. 

It is important to  have some 

Some examples of air-  

. Then in  section 2. 1. 2 several  common forms of engineering specifi- 

cations that may arise in flight control sys tem design problems a r e  

presented. 

of auto-guidance loops and control surface actuator systems.  

These are discussed mainly in relationship to  the design 

Flight control sys t ems ,  l ike all physical control sys tems,  are  

only l inear  over a l imited amplitude range at best. 

design s tage,  it is usually quite adequate to t r e a t  them as l inear  sys -  

tems  unless the dominant charac te r i s t ic  is a nonlinear element. This 

thesis  only considers  l inear  o r  l inear ized control sys tem design, hence 

At the prel iminary 
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specifications on nonlinear charac te r i s t ics ,  sue 

hys te res i s ,  and limit cycles ,  a r e  not discussed 

e design process  

t reated in the l inear  analys . That i s ,  th 

which the l inearization is valid can be spe 

design. Similar constraints a r i s e  naturally f rom the a i r c ra f t  l imi ta -  

tions such a s  a normal accelerat ion l imi t  or maximum rol l  r a t e  limit. 

These constraints a r e  included as p a r t  of the design specification. 

2. 1. 1 Some Aircraf t  Handling Qualities Cr i t e r i a  

Handling qualities c r i t e r i a  a r e  requirements  on the vehicle' s 

dynamic charac te r i s t ics  and control feel  character ' ist ics necessary  

to produce specified levels of closed-loop pilot-vehicle performance 

for a specific task or  mission. 

r e sea rch  has been and continues to be expended on developing adequate 

c r i t e r i a  f o r  the various types of flight vehicles. 

not to survey the field, but mere ly  to present  examples of typical c r i -  

ter ia .  

reader  is r e fe r r ed  to  references 3 3 - 3 6 .  

Extensive analytical and experimental 

The intent here  is  

F o r  more  specific details  and bibliographies the interested 

2. 1. 1. 1 Longitudinal Handling Qualities 

Longitudinal handling qualities for  fixed wing a i r c r a f t  a r e  

typically given a s  functions of the sho r t  period mode natural  f r e -  

quency, o and damping, 

example. 

performance, f rom Minimum Satisfactory to Minimum Flyable for  

. Figure  2-2 is a representat ive 

It shows boundaries of decreasing levels of pilot-vehicle 
5sposp SPY 

combinations of w and 5spwsp. The words Satisfactory" , Ac- 

ceptable" , I (  Flyable" have specific connotations relat ive to pilot 
S P  

ratjngs a s  indicated in table 2-1. 

and were established f rom fixed-base a 
These data a r e  f rom r e f e r -  

n-flight simulations 

of a piloted re -en t ry  vehicle, The region indicated as Good" hand- 

is f rom a n  ea r l i e r  in-flight simulation study (37). 

e pr imary  design spec  a1 stabi l i -  

zation loop can be  given in  t e r m s  of a des i r ed  region in the w - 
SP 
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NATURAL 

FREQUENCY 

0 
S P  

RADIANS 
S E C  

6 

5 

4 

3 

2 

1 

/’ 
/ 

( R e f .  34)  

0 I I I 

0 1 2 3 4 
0 I I I 

0 1 2 3 4 

- SEC” 
SP*SP 

DAMPING, 5 - SEC” 
SP*SP 

DAMPING, 5 

F i g u r e  2-2  Typ ica l  Longitudinal Handling Qual i t ies  C r i t e r i a  

15 



b 
H 

u C3 rn 

c1 
d 
a, 
d 
d 
a, 
V 

f3 

h 
k 
0 u u 
cd w 
m 

.r( 

c, 
cd rn 

k 
.r( 

2 

c, 
5 
P 

? 
0 
V 
cd w 
m 
.rl 
42 

m 

c, 

rd 

d 
5 

a 
2 
h 
k 
a, +- 

3 

2 
d 

0 
k 
a, 

a, 

2 c, 

a 
a, u u 
2 
5 

a, 

5 c d  
P h  
c , z l  

i;: 

CP 
m 

f 
m 

co 
cr) 

m 
a, 
V 
d 
a, 
k 
a, w 
a, 
k 

a,' 
rd 
L) 
m 

.. 
d 

F 
.r( 
c, 
cd 
k 

m 
c, 
- 
0 

a 
k 
a, a 
0 
0 u 
a 
a, 
3 

5 

.r( 

2 
2 

Y- 

16 



- plane f o r  the closed-loop shor t  period mode poles. It may %pwsp 
be totally unrealist ic to  specify the "Good" region for all flight 

conditions because of unnecessarily seve re  demands it might p l ace  

on the control system. Specifying a minimum Satisfactory level of 

performance would b e  m o r e  realistic. 

tempt to  obtain the bes t  handling qualities possible (c losest  to  the 

I t  Good" region) within the practical  limitation of the control system. 

In other words,  although a minimum specification is s e t  as a region 

of allowable designs the relat ive performance within the region is 

still important t o  the designer.  

single bes t  o r  optimum design. 

The designer  would still at- 

On the other hand there  is clear ly  no 

Cr i te r ia  such as figure 2 - 2  d o  not completely determine the 

Chalk (39) has shown that the shor t  longitudinal handling qualities. 

period mode ze ros  and s ta t ic  sensit ivit ies have an  important but 

lesser effect. 

pitch-up charac te r i s t ic ,  st ick force per It gtl , and other control f ee l  

character is t ics .  

the stabilization loop design problem. 

Other factors  a r e  the phugoid mode charac te r i s t ics ,  

However these usually a re  t reated separately f rom 

2. 1. 1. 2 Lateral-Directional Handling Qualities 

Lateral-directional handling qualities for  fixed wing a i r c ra f t  

a r e  m o r e  complicated because of potentially strong coupling between 

the Dutch-roll, roll-subsidence,  and sp i ra l  modes. Control of bank- 

angle with the ai lerons is a pr imary  task in the lateral-directional 

maneuvering loop. The ai leron,  

tion in most  cases is of the f o r m  

to bank angle,  9, t ransfer  func- 6a , 

1 1 

S R 
( s  f y ) ( s t T )  ( s 2  t 2Ldwds t w 

The pa rame te r s  of p r imary  importance to the lateral-directional 

handling qualities are 
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Dutch-r 011 mode damping 

ra t io  of numerator frequency to 
Dutch-r 011 frequency 

bank angle to side s l ip  angle ratio 

Extensive paramet r ic  studies have been made to re la te  pilot opinion 

to these parameters .  

the resu l t s  of many of these studies. 

severa l  c r i t e r i a  in a form that might be  used as the design specifica- 

tions for the la teral-direct ional  stabilization loop. 

t e r i a  for  the Dutch-roll mode, roll-subsidence mode and spiral mode. 

The data for  the Dutch-roll and sp i r a l  modes a r e  based on summary  

figures and tabulated data in  reference 33. 

data were  obtained f rom reference 40 for one value of rol l  control 

power. This figure should not be taken a s  a general  cr i ter ion,  but 

a s  a representative example of the type of specifications that might 

be given for a specific design problem. 

Ashkenas (33)  recently compiled and compared 

Figure 2 - 3  is a composite of 

It presents  c r i -  

The roll-subsidence mode 

The c r i t e r i a  shown in figure 2 - 3  for  the Dutch-roll mode con- 

s i s t s  of two parts.  The locatio corresponding to  various 

levels of handling qualities ar 

boundaries to the right. And the r Acceptable, 

Satisfact  

range of 1 +/PI.  
for Satisfactory handling qualities. 

ter ion is given a s  ranges of the rol l  mode pole locations corresponding 

the nearly ver t ical  

Near the origin is shown the sp i r a l  

The r oll-subsidence mode c r i -  
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t:, ro l l  mode time constants,  which is usua 

spective boundaries on the r e a l  axis for  Satisfactory handling qualities. 

Again here ,  as in the longitudinal ca se ,  the designer would t ry  to make 

the closed loop sys tem charac te r i s t ics  be as close to  the "Good" 

range a s  possible within reasonable demands on the control system. 

2. 1 .  1 .  3 VTOL Handling Qualities - Pitch Axis 

The two pr imary  handling qualities parameters  for  pitch con- 

t rol  of VTOL a i r c ra f t  a t  low speeds and hover a r e  control power and 

damping. 

t e r m s  of these parameters  using var ious piloted flight s imulators .  

A typical example f rom reference 35 is presented in figure 2-4. 

the pitch control power is established the design specification for the 

stabilization loop could be given as an  allowable range of damping for  

Satisfactory handling qualities. The designer would s t i l l  t r y  to  obtain 

the bes t  damping not just  that  corresponding to the minimum Satisfac- 

tory handling qualities. 

Handling qualities requirements  have been established in 

Once 

ontrol sys tems in general  

h t e r m s  as r i s e  t ime,  peak over-  

ents and conven- 

17)  in a n  at tempt  to  e s -  
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2. 0 

1. 5 

1. c 

0. 

Data 
Reference 35 Desirable  

0.4  
0 

0 0. 1 0. 2 0. 3 

CONTROL POWER , RAD/SEC 
INER T IA INCH 

F igure  2-4 Typical VTOL Handling Qualities Cr i t e r i a  for Pi tch  Axis 
Contr 01 
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any design with a s tep response lying within the given envelope is  

acceptable and, fur ther ,  that all such designs a r e  equally acceptable. 

It i s  possible to use two or more  diagrams s imi la r  to  figure 2-5 for  

indicating different levels  of acceptability. 

Portions of the design specifications for an  auto-guidance loop ' 

in a flight control system may be given in the fo rm of figure 2-5. 

F o r  example, the specifications for capturing the ILS beam in an  

automatic approach sys tem could be put into an  equivalent s tep r e -  

sponse specification. 

change in the re fer  

heading change in t 

Also the response of a n  autopilot to a s tep 

e altitude of a n  altitude hold mode, or a step 

cking mode could be specified similarly.  

pecifications recommended 

in  reference 17 is based on the amplitude ra t io  of the closed loop 

hip to some common te r  ecif icati  ons . 
the specific shape of the tolerance Itboxfl 

mentioned in the 

previous section, i t  is possible to  use two or more  diagrams similar 

r e  2-6 to specify different levels of acceptable frequency r e -  

22 
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The design specifications for the control surface actuator 

sys tems are typically presented in the frequency domain and quite 

likely in the form of figure 2-6. 
small electro-hydraulic s e rvo  t o  dr ive the valve of a l a r g e r  hydraulic 

actuator that  actually moves the control surface.  The design specifi-  

cation on the frequency response f r o m  the electr ical  input at the s e r v o  

to  the actuator ram displacement may be given in the fo rm of figure 

A common configuration is to  use a 

2-6. 

2.2 Pre l iminary  Design Pqocess .  

Designing a flight control sys tem involves, at the prel iminary 

stage,  a combination of technical engineering and management analyses , 
evaluations, and decisions. The goal is to  estab1ish.a conceptual de -  

sign that has a high probability of satisfying the overall  acceptance 

c r i t e r i a  when implemented, has  satisfactory interface- with other 

flight sys tems,  and can  be produced at a competitive, or at least ac- 

ceptable, cost. Obtaining this goal is a multiloop i terative process  

consisting of design, analysis ,  redesign, simulation, evaluation, and 

finally a decision. 

One of the first s teps  of the prel iminary design team is to  

t ransform the general  mission and operating requirements  into design 

specifications. These mus t  ref lect  not only the d i r ec t  flight control 

system requirements  of the previous section but a l s o  the interaction 

with the a e r  odynamic, s t ruc tura l  and subsystem requirements.  Often 

there  a r e  incomplete and even conflicting requirements  which must  b e  

reduced through experience and simplified analyses  to  one s e t  of com- 

patible, quantitative specifications. 

requirements  of design simplicity , maintainability , reliability , flight 

safety,  etc. and indirect  fac tors  such as time schedules and cost  

limitations. 

In addition there  a r e  ambiguous 

Prac t ica l  performance specifications seldom dictate a unique 

design solution. 

of solutions as indicated in the previous section. 

control sys tem engineer is to  es tabl ish,  as it were ,  candidate designs 

Rather they allow a n  acceptable range or  envelope 

The ro le  of the 
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within this acceptable range. 

a final preliminary des i  

simplicity,  cost ,  maintainability, etc. These 

distinct,  sequential operations. The subjective c r i t e  

kept in mind by the designer a s  he works to satisfy the quantitative 

specifications. 

These cand 

a sed  on the mor  

This thesis considers the problem of synthesizing candidate 

control system designs by analytical methods, once the quantitative 

spec i f ica t ims  have been es$ablished. It is thus recognized as only 

the middle portion, a n  inner loop, of the total prel iminary design pro- 

cess .  Real t ime simulation of a proposed flight control sys tem is a 

very important par t  of the prel iminary design process ,  particularly 

if a human pilot is to take pa r t  in  closing the loop. There is invariably 

some redesign during this phase which may be  done directly on the 

simulator or with the original analytical  method. 

is  not considered he re ,  other than this brief recognition of its impor-  

tant role  in the preliminary design process .  

2.3 

Simulation per  s e  

The Role of Analytical Design Techniques 

The control sys tem design engineer has many different synthe- 

s i s  techniques available and should always se lec t  a procedure commen- 

sura te  with the scope of the problem and the des i red  resul ts .  

ca ses  conventional cut and t ry"  methods using root  locus,  Nyquist 

or Bode diagrams a r e  by far the most  appropriate to use. 

techniques based on optimization theory attempt to provide a more  d i -  

r e c t  synthesis procedure than the conventional 'I cut and try!! methods, 

and for complicated design problems a r e  potentially the most  effective. 

Many flight control sys tem design problems involve multiloop or mul- 

ut-output design which is difficult or a t  least tedious and t ime 

In many 

Analytical 

consuming to  do by conventional techniques. 

reduce the 

Analytical methods can 

er of design i terations by considering the effect of 

f not all design parameters  on the sys tem performance si- 
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Paramete r  optimization and l inear  optimal control are two 

fundamentally different analytical design techniques based on mini- 

mizing a mathematical  performance index. 

formance indices in the synthesis of flight control sys tems are quadra- 

tic functionals that include, in some way, a model of the des i red  closed 

loop response.  

problems, is the integral  squared e r r o r  between the model and sys tem 

outputs for  a specific input. 

following approach of l inear  optimal control theory. 

functional of the e r r o r  between severa l  output var iables  of the model 

and sys tem plus a quadratic penalty on the control effort (26). 
a l ternate  procedure,  t e rmed model-in-the -performance-index is a l s o  

used in  l inear  optimal control (26). 
in each  of these is to represent  the design specifications for  the closed- 

loop response,  which may be given in one of the fo rms  discussed in 

section 2. 1. 

The most  effective p e r -  

The one most  widely used in parameter  optimization 

A m o r e  general  f o r m  is used in the  model- 

It is a quadratic 

An 

The object of including a model 

The model itself is not the specification. 

Optimization theory does not provide an  automatic method for 

designing control sys tems as is sometimes implied in the l i terature .  

Because of uncertainties in representing typical engineering specifi- 

cations by a mathematical  performance index, these techniques mus t  

be  considered as p a r t  of a design i teration loop. F igure  2-7 i l lus-  

t r a t e s  in a simplified manner the roles  of a n  optimization procedure 

in designing a pract ical  flight control system. 

Assuming that the design specifications have been established, 

the first item is to  select  a suitable l inear  model t o  represent  the 

dynamic response portion of the specifications in a performance index. 

This is not a n  insignificant mat te r  in itself. The mathematical  r e p r e -  

sentation of the flight vehicle is used in some cases  to establish the 

form of a suitable model (27). However, there  is, as yet,  no rigid 

se t  of rules  for selecting a model, and indeed, there  is no guarantee 

that a design based on any specific model w i l l  meet  the actual design 

specifications. The problem of model selection is t reated in p a r t  in 

reference 41 and a l so  in l a t e r  chapters of this thesis.  

27 
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Once a model has been selected,  a n  optimization design problem 

is formulated. 

tion design procedure,  the selection of a control scheme. 

parameter  optimization problem, this represents  selection of the feed- 

back and compensation configuration. 

the control configuration in theory is not selected a pr ior i  but in ap -  

plication is of a known form.  

F igu re  2-7 shows as the first element of the optimiza- 

In a 

In a n  optimal control problem, 

The next s tep  is to  define a performance index that includes 

the model in some way, and this var ies  depending on the procedure 

used. Constraints on pa rame te r s ,  signals,  or control effort  may a l s o  

be  represented in the performance index, or retained as auxiliary con- 

s t ra in t  equations as a r e  the differential equations representing the 

I 

flight vehicle. 

mizes  the performance index subject to the auxiliary constraints. 

Optimization theory is w e l l  established for  a l a rge  class' of idealized 

sys tem design problem (e. g. references 20 and 25). 

thus obtained is  optimum with respec t  to the idealized mathematical  

performance c r i te r ion  and constraints imposed. However it mus t  be ' 

evaluated against  the original quantitative specifications and the m o r e  

subjective requirements  to be an  acceptable design. 

sat isf ied,  the optimization procedure is repeated with a different 

control scheme and/or a modified performance index. 

optimization problem this might correspond to  changing the fo rm of 

compensation used. 

change in the relative weighting of var iables  in the performance index. 

Thus when practical  engineering specifications must  be  met ,  optimiza- 

tion design procedures form p a r t  of the design i teration loop. The aim 

of developing the pract ical  application of optimization techniques to  

synthesizing control sys tems is t o  provide rapid convergence of the 

i teration to  a sat isfactory design. 

A control sys tem design is then determined that mini-  

The design 

If these a r e  not 

In a parameter  

In optimal control theory it might require  a 

The viewpoint taken in this thesis  regarding the ro le  of optimi- 

zation and optimal control theory in designing control sys tems is funda- 

mentally different f rom that used to  der ive the theory. 

sumes  that it is possible to  define mathematically the design objective 

The theory as-  
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and, therefore ,  an  optimum sys tem design may exist (or  at least it 
may under cer ta in  w e l l  defined conditions). 

ance index truely represents  the physical objective of a problem, the 

theory a p p l i e s  directly,  and it is reasonable to  re fer  to  a n  optimal 

design. 

ing specifications that allow some tolerances,  a performance index 

becomes a guide in the selection of one of the acceptable designs,  

ra ther  than a cr i te r ion  itself. 

lems considered he re  fall into the la t te r  category, and therefore  the 

t e r m  optimal" , and hence 'I sub-optimal" , control sys tem becomes 

ra ther  meaningless and is used in this thesis only to  the extent neces-  

s a r y  to  discuss  re la ted work in  the l i terature .  

To the extent a per form-  

However, when the design goal is to  sat isfy typical engineer- 

The flight control sys tem design prob- 
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CHAPTER 3 

MODEL PERFORMANCE INDEX THEORY 

In this chapter a performance index is developed that includes 

a model in a n  ent i re ly  different manner  than those discussed in the 

previous chapter. 

mating one dynamical sys tem ( the modell 'by another (the actual 

sys tem) .  The bas ic  form of the resulting Model Per formance  Index" 

(Model PI1 is the same as that of quadratic functionals frequently appear-  

ing in modern control theory. The important point, however, is the 

ability to  interpret  the performance index direct ly  in t e r m s  of a 

model of the des i red  system response.  

It is based on a geometr ical  cr i ter ion for  approxi- 

3. 1 Transient  Response of Linear  Invariant Systems 

Development of the Model P I  theory requi res  a clear  under- 

standing of some fundamental propert ies  of l inear  invariant systems.  

F o r  the t ime being the discussion is res t r ic ted  to  single input/output 

sys tems that can be  descr ibed,  in general ,  by the nth order  differential ' 

equation 

where y is the output, u is the input and m i n- 1. 

conditions are assumed to  be  zero.  

The s y s t e m ' s  initial 

The corresponding t ransfer  
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function is 

There a r e  many al ternate  w a y s  to represent  mathematically 

the t ransfer  charac te r i s t ics  of a system. 

dered  he re  is the t ransient  bortion of the t ime response of the system 

for a unit step input. Assuming that a finite steady-state value of the 

output, y exis ts  for  a step input, the t ransient  portion of the r e -  
s s '  

sponse is defined a s  

The representat ion consi-  

The t ransform of the t ransient  response is easi ly  obtained f rom (3-21 

a s  

c 2 t b s t b  
b3 2 1 

b s m - '  + . . . . .  
m x ( s )  = 

0 
n-1 + . . . . .  t a s ' t a s t a  

s ' an-1' 2 1 
n 

2 n-l  + . . . . -  i- a 2 s  t a l s  i- a. 
n 

s ' an-1' 

A m o r e  convenient form can be obtained by defining a specific s e t  of 

for  x(t) that produces a r e -  

can be included in a performance index developed subsequently by 



these pseudo IC's. 
homogeneous differ entia1 equa ti 

The t ransient  response is then descr ibed by the 

(t) + - -  * * -t ( t )  + aox(t) = 0 13-51 x ( t )  + a x(n-l) ( nj 
n- 1 

with pseudo IC' s denoted by 

0 

0 

x ( O 1  = x 

X(0) = 2 
( 3  -61 

where  the values of x 2 e,c. are yet t o  be  determined to  give the 

des i red  equivalence. 

Laplace t ransform of (3-5) and comparing the r e su l t  with (3-4) 

0' 0' 
These  can  be established easily by taking the 

i. e. 

2 n n-1 f . .  . e - . +  a2s t a l s  t a ) x ( s )  
( s  f a n - p  0 

n-2 = (ko)s 

(n-  3) (n-4) + - .  .+ a j, ) s  2 
f (xo an- lXo 4 0  

(n-  2) (n-3) f . .  . . . .  e t  a x  t a 2 ) s  
f (xo 

f (xo ' an- lXo 3 0  

. . . .  

' an- lXo 4 0  3 0  

(n-  1) (n-2) f . . . . . . . . .  t a 2 t a2k0) 

n-2 f.. . . . . . . .  t a2s t a l )  n- 1 f a  s n- 1 f xo(s 

Note that xo occurs  in (3-7) only as a factor of the last term. 

paring the last term of (3-7) t o  the numerator  of (3-4) it is clear that 

Com- 
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= - bo/ao. Then, equating the c 

of the remaining t e r m s  on the r ight  ha 

the numerator of irst 

xO 

0 for  i > m 

bi 1 aj t ixo 

n- i -  1 
(j) f o r  i = 1, 2,. . . em 

j=n-m 

( 3 - 8 )  

(n-i) = 
xO 

Thus if  one uses the initial condition given by (3 -8 )  with the homo- 

geneous equation ( 3 - 5 ) ,  the t ime response would be  identical to  the 

t ransient  response of the original system equation (3-1) for a unit 

step input. 

they a r e  the values of the t ransient  response var iable ,  x( t ) ,  and i ts  

(n-1)th derivatives a t  an  infinitely smal l  t ime increment af ter  the 

application of the unit step input. 

An al ternate  interpretation of the pseudo I C ' s  is that 

The work that follows is based on representing the forced dy- 

namical system by an  autonomous system with a specific s e t  of pseudo 

initial conditions ( 3 - 8 ) .  The initial conditions w i l l  always be  r e fe r r ed  

to  a s  pseudo in order  to  emphasize that they a r e  not the actual initial 

conditions of the original system equation (3-1). 

contain the effect of sys tem ze ros  and a r e  a l s o  functions of the charac-  

te r i s t ic  equation coefficients. This is shown l a t e r  to  be an  important 

point in the development of the Model P I ,  a point not t reated properly 

in previous l i t e ra ture .  

These pseudo IC 's  

The following s ta te  space form of the t ransient  response pro- 

e s  a convenient and useful compact notation: * 

The time argument is suppressed for  notational convenience. 
t ranspose of a vector or mat r ix  is  denoted by ( ) I .  

The 
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1 (n-2) (n-1) - x' = [ x j, z . * . . x  X 

then equation (3-5) is given by 

where 

F =  

This is known 

notation for F 

F =  

F x  - 

0 1 
0 0 

0 0 

0 0 

~~ -a 0 -a 1 

0 

1 

0 

0 

-a 2 

0 0 . . . .  

1 0 

0 '1 

. . . .  
- - . .  

-a -a I . *  

n-2 n-1 

(3-9) 

(3- 10) 

(3-11) 

a s  the phase variable canonical form. 

is 

A more  compact 

(3-12) 

1 (3-13) an- 2 an- 1 [ a o a l a 2 - + - - *  

The pseudo initial condition for  (3-10) is 

(3- 14) 

are given by (3-8). (n-  1) where x io, - - - ,  xo 0' 

3. 1. 1 A Geometrical  Proper ty  of Autonomous Systems 

A geometrical  property of autonomous sys tems is considered 

in this section that presents  a novel character izat ion and leads to  a 

new cr i te r ion  for approximating one system by another. F o r  the 
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general  nth order  autonomous sys tem (3-  

partitioned vec tors  

- 21 

- = [ a ' ;  - 1  1 ] (3-16) 

[ i x ( n ) ~  = [ 51 i - x ~ a ]  - -  

where - x and - a a r e  defined by (3-9) and (3-13) respectively. 

(n t1) th  order  space is r e f e r r e d  to  he re  as the 

Then the autonomous system,( 3-5) can  be wri t ten as 

The 

(3-17) 

with pseudo IC 

Equation (3-  17) defines a hyper -plane in the extended s ta te  space nor - 
mal  to  the constant vector - Zi. 
t ime (i.  e.  the t ransient  response and its f irst  n derivatives) must  lie 

within the hyper-plane. 

t ra jec tory  that l i e s  within this plane can only differ f rom the f i r s t  by 

its pseudo IC. 

possible systems with the same charac te r i s t ic  equation, and is r e f e r r e d  

to  he re  as the charac te r i s t ic  plane or  simply the - 2-plane. 

invariant system can therefore  b e  completely descr ibed by its charac-  

te r i s t ic  plane and pseudo IC ' s .  

The t ra jectory of - i as  a function of 

Any other autonomous system producing a 

Thus the hyper-plane contains the t ra jec tor ies  of all 

A l inear ,  

This geometr ical  interpretation is i l lustrated for two simple 

second order  sys tems with the same charac te r i s t ic  plane in figure 3-1. 

The sys tems considered are given by 

s o  th 
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(3-20) 

with pseudo IC' s of 

(3-2 la) 

Z'  -2 0 
- 0. 25 - 0. 75 ] 

, 
(3-21b) 

for  figure 3-1, par t s  a and b respectively. 

responses)  for  both a r e  seen  t o  lie within the &-plane. 

of t ime,  in seconds,  is indicated along the t ra jector ies .  

The t ra jec tor ies  (time 

Progress ion  

Each pseudo IC (3-21) together with (3-19) correspond to  a 

different system t r ans fe r  function. 

(3-8) between the t ransfer  function coefficients and the pseudo IC's 
one readily sees that they represent  

By reference t o  the relationship 

1 

s 2  -t n s  i- 1 
( 3  -22a) 

and 

- 0.25 ( s  + 4) 
(3-22b) 

s 2  t 6 s  t 1 

respectively for  (3-21a) and (3-21b). 

Representing a sys tem by its charac te r i s t ic  plane and pseudo 

IC's does not set for th  any new mathematical  information. 

that the t ra jectory of any nth order  system l i e s  within a plane in the 

extended state space of (n t1) th  order ,  mere ly  relates the fact  that 

the nth derivative is a l inear  combination of the state var iables ,  as 

in equation (3-5). 

p rocess  of approximating one system by  another using the performance 

index developed in the next section. 

Stating 

However it provides a useful way of visualizing the 
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(b)  Pseudo IC Vector  Z t  = [ 1 -D 2 5  --* 7 5 1  
-0 

F i g u r e  3 - 1  Concluded 
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3 .  2 Model Per formance  Index (Model PI) 

The t e r m  "model"  as used he re  re la tes  specifically to  dynamic 

response specifications of some system design problem. 

r e f e r s  to  a mathematical  model of the des i red ,  or at l ea s t  satisfactory,  

response charac te r i s t ics ,  s o  that the design objective would be to  

closely approximate the model. 

this section that the model is a l ready given, although some factors  

affecting the choice of the model s t ruc ture ,  i. e .  number of poles and 

zeros ,  a r e  discussed. Methods for selecting an  appropriate model fo r  

various types of practical  engineering design specifications a r e  d i s -  

cussed subsequently. 

Usually it 

For  the most  pa r t ,  it  is assumed in 

As  pointed out in the previous section a l i nea r ,  invariant sys tem 

can be represented geometrically by its charac te r i s t ic  plane and pseudo 

IC. If both the model and the system to  be designed a r e  represented 

in this fashion, one can establish c r i te r ia  for approximating the model 

by the system in t e r m s  of their  character is t ic  planes and pseudo I C ' s .  

The Model P I  is one such criterion. The basic form of the Model P I  

can be thoughtof a s  a generalized measure  of the distance between the 

sys tem'  s t ime response t ra jectory and the model'  s charac te r i s t ic  

plane. This concept can be derived and explained most  c lear ly  for  the 

situation in which the closed-loop sys tem to be designed has no z e r o s ,  

a s  in the following section. It is extended to the m o r e  general  case  in 

section 3.  2. 2. 

3 .  2. 1 Systems Without Zeros 

Consider a general  closed-loop control system given by the 

t ransfer  function 

(3-23) 0 Y( S )  a 
- - -  

This is the special  case  of (3-2) with no ze ros  and unity s ta t ic  sens i -  

tivity. Its t ransient  response for a unit step input can correspondingly 
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be  represented by its charac te r i s t ic  plane (the - %-plane) defined in the 

(n+  1) -dimensional space by 
* 

- % ' ( t ) E =  0 

and pseudo IC vector 

c - 1  0 '  - 

(3-24) 

(3-25) 

where - 0 is a n  (n-1)-dimension null vector.  

The coefficient vector - a is generally a nonlinear function of the 

f r e e  design parameters .  

elements a r e  the f r e e  pa rame te r s ,  then this functional dependence can 

be emphasized by writing (3-17) as 

F o r  convenience, define a vector ,  E, whose 

(3-26) 

Varying the f r e e  parameter  vector changes g ( ~ )  and hence the orienta- 

tion of the s y s t e m ' s  charac te r i s t ic  plane. 

point, selecting the f r e e  design parameters  corresponds to selecting 

c n  orientation of the s y s t e m ' s  charac te r i s t ic  p k n e  in the (n+l)-dimen- 

sional space.  

F r o m  the geometrical  view- 

The significance of this w i l l  become apparent subsequent- 

ly-  
Assume for the moment that the model of the des i red  closed-loop 

system response is of the s a m e  order  as the sys tem and is given by 

0 
CY 

(3-27) 

where I = n in this case.  

(n+l)-dimensional space by its charac te r i s t ic  plane (the 2-plane) , 
The model can a l s o  be  represented in the 

* 
The 
of the control system. 

denotes a vector in the (n+l)-dimensional  extended s ta te  space  
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defined by 

2' ( t ) E  = 0 -m (3-28) 

and pseudo IC vector 

1' = [ -1 0' i CYo]  

0 -m (3-29) 

where gm(t)  and 

model,  and 0 is an  (n-1)-dimension null vector. 

correspond to  (3-15) and (3-16) respectively for  the 

Now both the sys tem and model a r e  represented  geometrically 

in the (n t l f -d imens iona l  space by their respect ive charac te r i s t ic  planes 

and pseudo IC vectors .  

l i es  within the corresponding plane. 

make these t ra jector ies  coincide, which means perfect  model matching. 

That i s ,  the t ime his tor ies  of the s y s t e m ' s  and mode l ' s  response to a 

s tep input would be  identical. What conditions, in t e r m s  of this geo- 

met r ica l  representation, a r e  both sufficient and necessary  for  this t o  

occur? 

rigorously.  

The t ime response t ra jectory f o r  each of these 

Ideally the designer would l ike to  

The answer to  this is fa i r ly  obvious but wi l l  be  established 

A sufficient condition is  considered first. If the orientation of 

the s y s t e m ' s  charac te r i s t ic  plane is selected,  by means of the f r e e  

design parameters ,  s o  that it coincides with the model ' s  charac te r i s t ic  

plane, then the two t ra jec tor ies  must  at l e a s t  lie within the same plane. 

And they can only differ if the system and model pseudo IC vectors  a r e  

not equal. The first n elements of both pseudo IC vec tors ,  ( 3 - 2 5 )  and 

( 3 - 2 9 ) ,  a r e  equal. The last elements of each, the (nt-1) e lements ,  mus t  

a l s o  b e  equal for  the two pseudo IC vec tors  t o  l i e  within the common 

character is t ic  plane. 

of a sys tem and model of the s a m e  order  t o  be coincident is for  the two 

charac te r i s t ic  planes to  be coincident. 

Therefore  a sufficient condition for the t ra jec tor ies  

T o  show that this condition is a l s o  necessary,  a s sume  that the 

t ra jec tor ies  coincide but that the two charac te r i s t ic  planes a r e  

coincident. 

mus t  lie along the intersection of the two planes. 

Since the common trajectory must  lie in both planes it 
The common pseudo 
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IC vector must  a l s o  l i e  along this intersection s o  that the t ra jec tory  

and pseudo IC vector mus t  be colinear. 

response t ra jectory,  - Z(t ) ,  mus t  equal the pseudo IC vector ( 3 - 2  

multiplied by some scalar function of t ime,  f ( t ) ,  i. e. 

This means that th 

or (3-30)  

However such a solution is not possible in general  because it would 

requi re  the first (n-1) derivatives of the t ransient  response variable 

to  be  identically z e r o  while the var iable  itself, x(t) ,  and'i ts  nth der iva-  

tive, x(")(t), a r e  non-constant functions of time. A first order  sys tem 

presents  a special  case  in which the t ra jectory is colinear with the 

pseudo IC vector ,  i. e .  

= [I: -aot -sot 
e - - % e  

-0 
(3-31) 

But in that case  the " charac te r i s t ic  planes" a r e  actually l ines and 

must  coincide i f  the t ra jec tor ies ,  which l ie  along these l ines ,  coincide. 

Therefore  it is not possible to  have system and model t ra jector ies  that 

coincide when their  charac te r i s t ic  planes do not. 

character is t ic  planes must  coincide if their  t ra jec tor ies  coincide. 

It follows that their  

The complete answer to  the question posed ea r l i e r  is that - the 

t ime response t ra jec tor ies  of a sys tem and model of the same  order  

-4- 

coincide. 
96 

T o  meet  this condition requi res  selecting the f r e e  parameter  

If the sys tem and model t ransfer  functions have ze ros ,  this s ta te-  
ment  is not necessar i ly  t rue  (see section 3.  2. 2). 
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vector such that - B is colinear with - E ,  i. 

where c is some const i- 

mating the model by th 

ent freedom is allowed in determining 5. However the functional 

relationship of - B to  (E in most  design problems precludes satisfying ( 3 - 3 2 ) ,  

which means that the two charac  

would intersect  a t  some angl? for all allowable values of (E and the model 's  

t ra jectory could not be  matched identically. 

the orientation of the - Z-plane could be selected s o  that the s y s t e m ' s  

t ra jectory would l ie  within the - E-plane, then the two t ra jec tor ies  would 

e)  

It w a s  shown above that if 

coincide. 

could be made to l ie  close to the - b-plane it would be close to  the mode l ' s  

trajectory.  

in order  for the e r r o r  between the two t ra jec tor ies  to  be smal l  since 

It is reasonable to expect that if the s y s t e m ' s  t ra jec tory  

One can certainly s ta te  that it mus t  be cloge to  the - E-plane 

the mode l ' s  t ra jectory l ies  in the - 5-plane. 

mating the model by the system can be established based on minimizing 

some generalized measu re  of the distance between the s y s t e m ' s  t r a -  

jectory,  E(t) ,  and the E-plane. 

A cr i te r ion  for approxi- 

.I. 
- 

The instantaneous distance f rom - k(t)  to  the - &-plane is given byT 

( 3 - 3 3 )  

As mentioned previously, it  is generally not possible to select  the f r e e  

parameter  vector ,  (E, so  that - Z(t) l i es  in the - 2-plane thus making ( 3 - 3 3 )  

z e r o  a t  each instant of t ime. A generalized measu re  of the distance 

f oll owing 

* 
The notation 11 v - 

length of - v. 
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(3-34) 

Selecting E to  minimize (3-34) selects  the system trajectory that l ies  

the closest  to  the 6-plane in the root-integral-square sense 

equivalent to use the square of (3-34) as a cr i ter ion,  which is taken as 

the basis  for the 'I Model Performance Index'' 

as 

It is - 

The Model PI is defined 

< 

* 
which can be writ ten in the compact form 

0 

(3-35) 

where 

(3-36) 

It is termed the Model PI  because the s ta te  vector weighting 

mat r ix ,  6, is used to  represent  the model, or more  correct ly  the 

model'  s character is t ic  plane, in the performance index. It possesses  

a l l  the des i red  propert ies  of a performance index, that i s ,  it is a 

* 2 
The notation 11 M, where M is a square mat r ix ,  means v' Mx. 
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as the system (I= n). It w i l l  now be shown that 

higher order models (I > n) ,  but that case 

type of design problems considered. 

of much interest  in the 

The model is sti l l  assumed to  be  given by equation ( 3 - 2 7 )  except 

now I < n. Define the charac te r i s t ic  plane of an  I th ' o rde r  model in its 

(I t1)-dimensional extended s ta te  space , a s  
4 

2' ( t ) C  = 0 (3 -37)  -m 

and the mode l ' s  pseudo IC vector 

= E - 1 ;  0 ' :  (Y ] 
8 - 1  0 2' 

-mO 
( 3 -'38) 

which correspond to definitions (3 -28)  and (3 -29)  respectively. 

mode l ' s  t ime response t ra jectory l ies  in its charac te r i s t ic  plane 

(c-plane) in the ( I+ l )  -dimension space. 

l ies in the 5-plane in the ( n t l )  -dimension space,  only its projection 

into the mode l ' s  extended s ta te  space can be considered for approxi- 

mating the model'  s t ra jectory.  

The 

Since the s y s t e m ' s  t ra jectory 

Let  - 2(t)  be the projection of the s y s t e m ' s  t ra jectory in the ( I t 1 ) -  

space,  then 

space of the model when I < n. 
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H = [ I !  01 (3 -40) 

I and 0 a r e  appropriately dimensioned identity and null mat r ices  

respectively. 

this case is to  select  the orientation of the 

such that the projection of the s y s t e m ' s  t ra jec tory ,  c $(t), approximates 

the mode l ' s  t ra jectory,  2 (t) .  Mathematically, it would be possible to  

match the mode l ' s  t ra jectory,  except for a n  a rb i t r a r i l y  smal l  region 

around 2 
make cer ta in  elements of Z go to  infinity. 

fied la te r .  

F r o m  the geometrical  viewpoint the design problem in 

plane, by means of e, 

m 

, by 2( t )  if sufficient freedom is allowed in selecting E to - 
-0- - This statement w i l l  be ver i -  - 

It should be clear  that 2 ( t )  would have to  l ie  within the 6-  - - 
plane in order  to match 2 ( t )  identically. It w i l l  a l s o  be shown subse-  -m 
quently that - -  if s ( t )  l i es  in the - &-plane for a l l  t ime grea te r  than zero,  it 

must  coincide with 2 ( t )  except for  an a rb i t r a r i l y  smal l ' reg ion  around 
--m 

2 
to  expect that if  the projection of the s y s t e m ' s  t ra jectory in the ( 1 t l ) -  

space could be made to l ie  close to the - h-plane it would be close to  the 

mode l ' s  trajectory.  It then follows that the c r i te r ion  used to  es tabl ish 

the Model P I  for the case where 1 = n is a l s o  valid here.  

. Assuming these statements to  be t rue it would again be reasonable 
-0 

The instantaneous distance from - 2(t)  to  the - 6-plane is given by 

(3-41) 

One could use the square of (3-41) to  form a performance index s imilar  

t o  (3-35), but by substituting ( 3 - 3 9 )  in (3-41) and making a new, yet 

consistent, definition of - a, the same Model PI (3-35) resul ts .  

Define an  ( n t  1) -dimensional vector 

( 3 -42) 

(3-43) 

Using (3-40) in the above gives 
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0 '  1 &' = [ & I  : - - I -  

or  

ent with the 

nothing to  the length of - & s o  that 

he null vector in ( 3 -  

11 2 II = II E II (3  -45) 

Using this new definition for  - & (3-43)  in (3-42)  gives 

( 3  -46) 

which is exactly (3-33) .  

f rom the projection of the s y s t e m ' s  t ra jectory into the (I t1) -space  to  

the m o d e l ' s  character is t ic  plane for  1 5 n. The Model P I  (3-35)  with 

- B defined by (3-44)  is valid for models of order  l e s s  than or equal to  

the s y s t e m ' s  order.  

Therefore  (3-33) is the instantaneous distance 

It s t i l l  remains  t o  verify the two statements assumed to  be t rue  

in the foregoing development. To  establ ish these points, it is useful 

t o  introduce the notion of extending the - &-plane, which w a s  defined in 

the ( I t 1 ) - s p a c e ,  into the (n t1) -space .  The new definition for  - E (3-44)  

provides a d i r ec t  means for  doing this.  

Assume I < n, then the expression 

H' (t)? = 0 ( 3  -47) -m 

defines a plane (&-plane) - in the (n t1) -space  that is coincident with the 
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c &-plane. Let c 5. be an  a r b i t r a r y  vector in the g-plane,  then 

9'5 = 0 - -  
Using the definition of - d in (3-48) gives 

(3 -48) 

- -  G'H& = 0 (3 -49) 

which means that the vector HZ, which is the projection of - t into the 

(I i -1)-space,  l i es  in the - &-plane. 

The s ta tements  in question can be verified by showing that - %(t) 

coincides in the l imit  with 2 
near % 

plane a s  cer ta in  e lements  of 5 go to  infinity. 

can not coincide with - Zi,-plane for any finite .- Z because 

l inear  with - Zi, for the planes to  coincide, i. e. 

( t ) ,  except for  an  a rb i t r a r i l y  smal l  region -m 
, if and only if the - 8-plane coincides in the limit with the - 3- 

-mO 
When I <'n the - 8-plane 

has to  be co- 

or 

1 ] = [ & '  0' ] (3-50) - 1 -  
a . . . .  I a 1 

I t 1  I t 2  n- 1 - I a 
c - '  

and in order  to  satisfy (3-50) c mus t  go to  infinity, the elements of 5 
must  go  t o  infinity in such a way that 

1 im [;a3 = - & 
C *m 

and the remaining elements of 5 must  satisfy 

[;ai] = o for  i = I t l ,  1 t 2 ,  - - * *  , n-1 1 im 
C + W  

Then - H must  sat isfy 

(3-51) 

(3-52) 

(3-53j  
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The elements of - 2 a r e  the f i r s t  (1 t l )  elements of - Z, which a r e  functions 

of E. 
sufficient freedom is allowed in selecting - 2, via 2, to  either make the 

- Z-plane a rb i t r a r i l y  c lose to  the - b-plane or coincide in the l imi t  with 

the - 8-plane. 

Whenever necessary  in the following proof it is assumed that 

The sufficiency condition w i l l  be  considered f i r s t .  As the - Z- 

plane is made a rb i t r a r i l y  c lose to  the c-plane the s y s t e m ' s  t ra jectory,  

- 2( t ) ,  becomes a rb i t r a r i l y  close to  the - 8-plane. Since the - 3-plane coin- 

tides with the - &-plane in (I t1) -space  the projection of - Z(t) into (1tl)- 

space,  g ( t ) ,  becomes a rb i t r a r i l y  close to the - 2-plane, except fo r  - $ ( T )  

where 0 i T < E and E is some smal l  positive number. The projection 

of the s y s t e m ' s  pseudo IC vector ,  go, into (I t1 ) - space ,  go, is generally 

not close to the $-plane. This is easi ly  shown by evaluating 2 i. e. -0 , - 

where the null vectors  a r e  appropriately dimensioned. Then 

$18 = --Ly # 0 (3-55) -0- 0 

s o  that SO is only close to the &-plane if CY 

- $(t) has to  t ravel  f rom go to  a region a rb i t r a r i l y  close to  the 2-plane 

during the time interval [ 0 ,  E ). 

is very small .  Therefore the 
0 - 

Before proceeding with the proof it is helpful to  i l lustrate  s eve r -  

a l  of the points made thus f a r  for the simple case  of a second order  

system ( n =  2) and a f i r s t  order  model (1 = 1). 

quence of sketches in which the s y s t e m ' s  charac te r i s t ic  plane, 5-plane,  

becomes successively c lose r ,  going from part  a to par t  c y  to  the ex- 

tended character is t ic  plane of the model, - 3-plane. 

mode l ' s  " character is t ic  plane" is actually a l ine in the two-dimension- 

a l  space. 

F igure  3 - 2  shows a s e -  

In this ca se  the 

Its t ra jectory,  2 ( t ) ,  l i es  along this l ine start ing a t  2 
-mO -m 

with time. 

in the two-dimensional space.  The 

The - &-plane is  c lear ly  shown and receding into the origin 

to  coincide with the - 2-plane 
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sys tem’  s t ra jectory,  

dimensional space. I 

2( t ) ,  s t a r t s  a t  2 and - -0 
t) in par t s  a ,  b ,  and c sho  

he - 2-plane the - 2(t) bec  

tion required to  go f r  

&-plane near 2 

s e e  that the t ime interval required t o  go  f r o m  2 
c r e a s e s  as the - Z-plane approaches the 2-plane. 

that - 2(t) is not c lose to  the - &-plane. One can a l s o  
-0 

- 
to  the - &-plane de -  -0 

Now proceeding with the proof, consider the limiting case  as 

the - 5-plane coincides with the - h-plane. In the l imit ,  - f ( t )  then l ies  in 

the - h-plane and - 2( t )  mus t  l i e  in the - &-plane. 

plane, s o  - 2( t )  is discontinuous at t = 0 ( E  - 0 ) .  

s y s t e m ’ s  t ra jec tory  in the l imit ,  one can show that only the l a s t  e le -  

ment of - 2(t) is discontinuous. Consider the partitioned form of the s y s -  

tern' s t ra jectory equation 

But 2 is not in the - 8- 
-0 

By considering the 

(3-56)  

1 Multiplying (3-56) by ;, taking the l imit  a s  c +co, and using (3-51) and 

(3-52),  gives on the left hand side 

(3-57) 

and z e r o  on the right hand side. 

jectory equation reduces to 

Thus in the l imit ,  the s y s t e m ’ s  tra- 

2’(t)& = 0 (3-58) - -  
or 

(3-58a)  

52 



Using the first I initial conditions in (3-54) for  the var iables  on the 

( I )  = (Y But xo ('1 = o in (3-54) right hand s ide of (3-58a) gives xo 

s o  that x(')(t) is discontinuous at t = 0. Let &+ denote the value of 

- f ( t )  at the discontinuity when approached f r o m  the positive time d i r ec -  

tion. Then 

0' 

-o+ f '  = [-1 I I -  0' i (Yo 3 (3-59) 

and - f ( t ) ,  given by (3-58) and (3-59), is continuous over the t ime interval 

(0 ,  co) and l i e s  entirely in the'&-plane. - 
The mode l ' s  t ra jectory,  given by (3-37) and (3-38),  is continu- 

ous at t = 0 s o  that 

( 3-60) 2' = f '  - - [-1 i 0' i ( Y o ]  

-0 -m o+ 

Since 2(t) and 2 
t = O', they must  coincide over the t ime interval (0 ,  00). 

there  is a n  a rb i t r a r i l y  small region near d 
coincide with f ( t )  due to the discontinuity in %(t) at t = 0. This 

verified that 2(t) coincides in the l imit  with d 
t ra r i ly  smal l  region near 2 

with the - E-plane. 

( t)  both lie in the - h-plane for  t > 0 and a r e  equal a t  -m - 
However 

in which - f ( t )  does not 

- -mO 
-m 

( t ) ,  except for  a n  a r b i -  -m - 
, if the - Z-plane coincides in the l imit  

-mO 

Proof of the necessary condition is s impler .  

-m 

Assume that 

f ( t )  and f 
f , i. e. they coincide over the t ime interval ( 0 ,  00). Then - d(t) must  

lie in the - &plane for  t > 0. Since the - E-plane is coincident with the 

- &-plane in ( l + l ) - s p a c e ,  - Z(t )  mus t  lie in the - E-plane in order  for  its 

projection into the (I+-1)-space t o  lie in the - $-plane. 

proven by contradiction. 

( t)  coincide, except for  a n  a rb i t r a r i l y  small region near - 
-mO 

This can be 

Assume for  the moment that - E(t) has a com- 

p ~ ~ e ~ t  ~ G ~ ~ T ~ Z I  io the z-plctile, i. e. 

Z(t) = ji: (t) + ZJt)  (3-61) -t - 
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where I ( t )  l i e s  in 

projection of c I ( t )  i 
-t 

d f (t)  is norm the 5-plane. The -rl - 

- 2(t)  = HSt( (3-62) 

s o  that 

= Zl ( t )H '& 
- 8  -n 

= Z ' ( t ) 5  (3  -63) -n - 
Since I ( t )  is normal to  the - &-plane it mus t  be  colinear with - 5 ,  i. e.  -n 

j ;  ( t )  = f ( t )  - 5 (3-64) -n 

where f( t )  is some nonzero function of time. 

gives 

Using (3-64) in (3-63) 

- -  2l(t)  i? = f ( t )  11 g2 # 0 (3-65) 

But (3-65) contradicts the s ta tement  that - 2(t) l i e s  in the - h-plane s o  that 

the assumption that - Z(t) has a component normal to the - 5-plane has to  be 

false.  

s o  - Z(t)  must  l ie  in the - 5-plane. 

coincide with the - 5-plane or - Z(t) l i es  along the intersection of the 5-plane 

and the - &-plane. proof is the same as that presented 

ea r l i e r  for the necessary condition in the case  where I = n ( s e e  page41). 

The pseudo IC vector to  use in this 

elements a r e  the sa 

(0,  00) is considered. The r e  repeated here .  

This ver i f ies  that - 2(t) coincides in the l im 

a rb i t r a r i l y  smal l  region nea 

Thus ?(t) can l ie  in the &-plane only if - f ( t )  l ies  in the - 5-plane; 

It follows that the - Z-plane must  e i ther  

F r o m  this point t 

l imit  with the - &-plane. 

Q. E. D. 
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The geometrical  approach used here  to  motivate the Model PI 

may not be  appealing to  pragmatic control system engineers,  particu- 

l a r ly  since it becomes ra ther  abs t r ac t  for systems of more  than second 

order .  

higher dimensional spaces  and to re la te  the system! s t ra jectory to  one 

of these representing the model. 

terpretation of the Model PI. 

below that provide additional insight to the Model PI. 

It is difficult to  visualize hyperplanes in four-dimensional or 

One would l ike a more  physical in- 

Two al ternate  interpretations a r e  given 

The vector e r r o r  betwpen the system and model t ime responses  

in the mode l ' s  extended s ta te  space is given by 

- G(t) = - ;i(t) - jz ( t )  (3-66)  -m 

A general  quadratic performance index s imi la r  to  ones often appearing 

in modern control theory is 

(3 -67)  

where Q is taken to  be diagonal for lack of any reason to choose other- 

wise. However if Q is chosen to be 

Q = H I G H  (3 -68)  

A. 

where Q is given by (3 -36)  then this performance index is equivalent 

to  the Model P I  (3 -35) .  

of (3 -67)  as 

This can be shown by writing out the integrand 

(3-69)  
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but 9 (t)& = 0,  s o  that -m 

( 3  -69a) 

Therefore one can interpret  the Model PI  a s  a weighted integral  quad- 

ra t ic  e r r o r  performance index for a special  weighting matr ix .  

mizing the Model P I  corresponds to minimizing a cer ta in  weighted com- 

bination of the e r r o r  and the f i r s t  1 of its derivatives (1 is the order  of 

the model). 

Mini- 

The above development a l s o  has a special  connotat,ion in the geo- 

met r ica l  approach. The t e r m  

in equation (3-69) is the component of - $(t) normal t o  the mode l ' s  

character is t ic  plane, which is the same  a s  the distance f rom the p r o -  

jection of the s y s t e m ' s  t ra jectory into the mode l ' s  extended s ta te  

space to the &-plane, which is a l so  the same as the distance f rom the 

system'  s t ra jectory to the - 3-plane. 

be viewed a s  minimizing the e r r o r  normal  to  the - &-plane. 

Minimizing the Model P I  can then 

The most  d i rec t  physical explanation of the Model P I  is not 

The model, wri t ten a s  an autonomous rigorous but quite pragmatic. 

sys  tem 

(1-1) f . . . .  + C Y ; ;  t C Y k  t a x  = o  
1 - lXm 2 m  O m  O m  

X t CY m 

( 3 -  70) 

with appropriate pseudo IC, can be interpreted as representing the 

relationship o 

of the control is ,  that this sum of t e r m s  be zero.  A s -  

suming this v 

uld l ike to  exist  among the first I t 1  s ta te  var iable  

performance index to  use for trying to  

56 



force  the control sys tem state  var iables  into this l inear  relationship is 

(3-71) 

Note that the integrand is the square of (3-70) with the system% state  

var iables  replacing those of the model. 

var iables  must  of course  satisfy the system equation, which is repeated 

h e r e  f 

The control sys tem state  

but the coefficients a r e  functions of the f r e e  p a r a m e t e r s , ' E  If E is 

chosen to  minimize (3-71) subject to  the cbnstraint  (3-5) ,  then the s y s -  

tem state  var iables  can be  said t o  respond in the bes t  l inear  relation- 

ship to approximate the model,  in the integral  squared sense.  

performance index (3-42) differs f rom the Model PI only by a constant 

factor  11EII - and thus is effectively the same.  

The 

2 

Mathematically, the Model P I  (3-35) is the square of a l inear  

function space norm of the distance f r o m  the s y s t e m ' s  t ra jectory to 

the model'  s character is t ic  plane. Physically,  it represents  a des i r e  

to  f o r c e  the control s y s t e m ' s  output and its derivatives to  respond to  

a s tep input with the same l inear  relationship as the model. 

ly ,  - it is a quadratic cos t  functional s imi la r  toones used extensively in 
modern control theory without any previous physical interpretation or  

solid justification. The nice mathematical  charac te r i s t ics  of positive 

definite or  semi-definite quadratic cos t  functionals have been the 

prime motivation for  many theorists.  

the Model PI are developed in Chapter 7 that allow one to  determine an  

equivalent Model PI fo r  generai  quadratic cost funcrionais. 

possible to  give a physical interpretation to  some  of the s t r ic t ly  mathe- 

matical examples that have appeared in modern control l i terature .  An 

example of this is a l s o  presented in Chapter 7. 

Historical-  

Some interesting properties of 

it is then 
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The next point to consider briefly is whether the Model PI 
gives satisfactory resu l t s  for  a t  l e a s t  simple academic examples. 

is possible to  obtain an  analytical solution to  the Mode 

a general  second order  system with no zeros  for z e r o  

second order  models. 

ed in Appendix A. 

preted in the geometrical  sense  a s  well as by root locus and s tep r e -  

sponse. 

It 

The detail  formulation and solution a r e  present-  

The resu l t s  for two cases  a r e  shown he re  and inter-  

u( s )  c 

Example 3-1 

Consider the simple feedback control system in figure 3 - 3 ,  

where k is a f r e e  design parameter .  

k, that makes the closed loop response to a unit step input approximate 
that of the f i r s t  order model shown. 

The object is to se lec t  the gain, 

Ym( S 1 1 
s t l  

c 

Sys tem 

Model 

Figure 3-3 Block Diagram of System and Model for Example 3-1 
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The autonomous system representation of the closed loop control 

system transient  response is 

Z t 2 2 t k x  0 (3-72)  

with x = -1, io = 0. The Model PI corresponding to  the f i r s t  o r -  
0 

der  model is 

or 

PI = $ lom (x t k)2  dt  (3-73)  

This example is of the same  form a s  Case lb  in Appendix A and the 

value of k that minimizes ( 3 - 7 3 )  can be seen  from equation (A-10) to 

be k = 2. 0. 

The geometrical  interpretation of this solution is shown in 

figure 3-4.  

mal to 

The extension of the model ’s  character is t ic  planes is nor-  

E ’  = [ 1 1 01 (3-74)  - 
and hence perpendicular to the xk-plane. 

plane is normal to 

The sys tem’  s character is t ic  

The general  - Z for  this example is 

so  that only the f i r s t  element was f r ee  to be selected. 

is of lower order  than the sys tem,  the projection of the s y s t e m ’ s  t r a -  

jectory on the x2-plane should be compared t o  the model ’s  t ra jectory 

as mentioned ea r l i e r .  

Since the model 
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Figure  3-5 Root Locus for  Example 3-1 

9 Model 
a Model PI Solution 
V Alternate 
A Alternate 

------ 
--- 

1. 

--- 0.  

0 

0 1 2 3 5 6 7 8 
-0. 

TIME -c. SEC 

F igure  3 - 6  Step Responses fo r  Example 3-1 
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Discussion of the solution is more  meaningful if a l ternate  solu- 

tions are compared. 

Model PI solution and two al ternate  solutions denoted. 

sponses fo r  these three solutions a re  compared to  that of the model in 

figure 3-6. 

approximation t o  the model of the three  solutions considered. 

m o r e  general  t reatment  in Appendix A shows that the Model PI solu- 

tion does approach the model if the coefficient a 

Example 3-2 

The root  locus is shown in figure 3-5 with the 

The step r e -  

F o r  this s imple example the Model PI  is clear ly  the bes t  

The 

is very  large.  1 

Consider the s a m e  feedback system as  example 3 - 1  but use the 

second order  model in figure 3-7. 

F igure  3 - 7  Block Diagram of Model for Example 3-2 

The corresponding Model PI is 

or 
.M 

PI = $ j  (x t f i x  t % ) 2  dt  
0 

( 3 - 7 i )  

This is a specific example of Case I C  in Appendix A and the solution 

given by equation (A-13) is k = 1. 26. 
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F igure  3-9 Root Locus for  Example 3-2  
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Figure  3-10 Step Responses for  Example 3 - 2  
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The corresponding geometr ical  representat ion is shown in 

figure 3-8 with the - &-plane and - 8-plane normal  to  

(3 -78)  

and 

- f i t  = [ 1.26 2 1 1  (3-79)  

respectively. 

charac te r i s t ic  planes compare w e l l  in the three-dimensional space. 

The t ra jec tor ies  shown lying within the respect ive 
f 

This example w a s  chosen specifically s o  that it was not possible to  

make the two planes coincide for any allowable choice of - Z given by 

(3-76). As indicated in Appendix A, if a = f i  then the Model PI 
solution would give fi = 5. 

1 
- -  

The root locus for  this example is shown in figure 3-9 with the 

Model P I  solution and two al ternate  solutions denoted. On the basis  of 

comparing pole locations, the Model P I  is a reasonable approximation 

of the model. 

f igure 3-10. 

mation of the solutions considered. 

The corresponding step responses  are  compared in 

Again in this example the Model P I  gives the bes t  approxi- 

One can not generalize at this ea r ly  point and say that the Model 

P I  always gives the "bes t "  possible solution or even a satisfactory 

solution when considering pract ical  problems. 

practical  applications it is necessary  t o  extend the concept to  a l a rge r  

c l a s s  of control systems.  

Before discussing 

3. 2. 2 Systems with Ze ros  

The ze ros  of a sys tem have a ve ry  strong effect on i ts  step 

response.  'Since the Model PI is based on the t ransient  portion of 

the s tep response,  it mus t  include this effect t o  be useful for  sys tems 

with zeros .  

single input/output sys tem case by re fer r ing  once again to  the geomet- 

rical interpretation of autonomous sys t ems  in the extended s ta te  space. 

The Model PI is extended in this section to  the general  



Recall that the motivation for  s e l  

without ze ros  was to force  the s y s t e m ' s  

to  l ie  close to the model ' s  cha rac t e r i s t i  

the f i r s t  I pseudo I C ' s  of the sys te  

cal ,  s o  that matching charac te r i s t ic  planes correspond to  matching 

t ra jector ies .  This is not necessar i ly  t rue  for  sys tems with zeros .  As 

mentioned previously in section 3. 1 ,  the pseudo IC' s contain the effect 

of the system ze ros  while the charac te r i s t ic  plane is only dependent on 

the poles. 

corresponds to picking a different s tar t ing point for  the t ra jectory in 

the character is t ic  plane. This was i l lustrated ea r l i e r  in figure 3-1. 

A system with zeros  and a model with or without ze ros  would generally 

not have the same pseudo I C ' s  except in some special  cases  that a r e  

discussed la te r .  

the Model PI for  sys tems 

F o r  a given se t  yf poles, changing the ze ros  of a sys tem 

By vir tue of the relationship ( 3 - 8 ) ,  the sys t em ' s  pseudo IC ' s  

a r e  in general  functions of the f r e e  design parameters .  They a r e  not 

a rb i t r a ry  constants a s  normal initial conditions a r e  usually considered 

to be. 

Model PI and for deriving an  optimization algorithm. 

t reated in Chapter 4. 

me te r s  changes the pseudo I C ' s  a s  well a s  the s y s t e m ' s  character is t ic  

plane. Therefore in the general  case it is necessary  to  add a con- 

s t ra in t  on the relative location of the s y s t e m ' s  and mode l ' s  pseudo 

IC's .  

then matching the charac te r i s t ic  planes would again correspond to 

matching the t ra jec tor ies  . 

This is a c r i t i ca l  point to  understand both for  extending the ' 

The la t te r  is 

The design process  of selecting the f r e e  para-  

The constraint  should be such that if it is satisfied identically, 

One such constraint  that  is convenient to use is to place a 

qtladratic pezalty ozx the e r r o r  between the pseudo IC vectors projected 

into the mode l ' s  I -dimensional s ta te  space,  i. e. 

(3-80) 

where 
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(3-81)  

and I is the I X I identity mat r ix  and the 0' s a r e  appropriately dimen- 

sional null mat r ices .  

IC' s ,  which is sufficient. 

the charac te r i s t ic  planes would correspond to  matching the t ra jector ies ,  

a t  l ea s t  in the (I t1)-dimensional  space. 

formance index penalizes l a r g e  deviations of Z1 W f rom E' W.. 

to  force  the f i r s t  I elements of il 

pseudo IC ' s .  

the s y s t e m ' s  t ra jectory l ie close to the c 3-plane then corresponds to 

approximating the model'  s trajectory.  

This places constraints only on the 

I€ (3-80)  is identically ze ro ,  then matching 

Including (3-80)  in the pe r -  
e cy 

It tends 
-mO -0 

to be near the corresponding model -0 
Selecting the - 8-plane, via the f r e e  parameters ,  to  make 

The general  fo rm of the Model PI is thus defined. a s  

(3-82)  

cy - 
where W and Q a r e  given by (3-81) and (3 -36)  respectively (3  - is defined 

by equation (3 -44)  ). The s c a l a r ,  r ,  is selected by the designer to  s e t  

the relative weighting between matching pseudo IC' s and character is t ic  

planes. 

zeros  is easily shown to  be equivalent to  (3 -82) .  

system and I t h  order model both without ze ros  and unity s ta t ic  gain ( i f  

they don' t have unity s ta t ic  gain, the inputs can be scaled s o  that they 

du). Z' r~z?  ( 3  9) the  s ' j s t e m ' s  pseudo IC ' s  a r e  

The form of the Model PI (3-35)  defined for  systems without 

Consider an  nth order  

for  j = 1, 2, - - (n-1) (3-83)  

and the model ' s  a r e  
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for  j = 1, 2, - - - (1-1) (3-84) 

Since P I n, the f i r s t  I pseudo I C ' s  a r e  the same  for the sys tem and 

model, thus 

(3-85) 

for  a system and model without zeros .  

Sufficient flexibility is provided in the Model PI ( 3 - 8 2 )  for  most  

single input/output system applications; however the fo rm of the model 

chosen, i. e. the number of poles and z e r ~ s ,  is important for its most  

effective use. 

model s t ruc ture  when considering sys tems with zeros .  That i s ,  the 

model should have the same number of excess  poles over ze ros  as the 

closed loop control system. 

the model has I poles and k ze ros ,  choose a model such that (I -k) = 

(n-m).  

and model a r e  compatible. 

have the same algebraic form a s  determined by (3-8) ,  and, if sufficient 

freedom is allowed in the choice of the s y s t e m ' s  numerator and denomi- 

nator polynomial coefficients, they can be numerically equal. An exam- 

ple more  clear ly  i l lustrates  the point. 

a s  five poles and three  ze ros ,  and the model has four poles and two 

ze ros ,  both have two excess  poles. The corresponding pseudo I C ' s  as 

determined by (3-8)  a r e  compared in Table 3-1, which shows the f i r s t  

four to be of the same algebraic  form. 

the a .  and b.  coefficients s o  that they a r e  numerically equal. 

other hand if the model had three z e r o s ,  the s y s t e m ' s  pseudo IC ' s  

would not be  compatible with the mode l ' s  pseudo I C ' s  a s  i l lustrated in 

Table 3 - 2 .  

Compatibility then a s s u r e s  that the formulation of the analytical design 

One simple rule  should be followed in selecting the 

- 

If the sys tem has n poles and m z e r o s  and 

The rule  guarantees that the f i r s t  I pseudo I C ' s  of the system 

Compatibility in this case means that they 

Assume the closed-loop system 

It would be possible to  select  

On the 
1 J 

It would not be possible for  them to  be numerically equal. 
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process  meets  the conditions that motivated the definition of the general  

Model PI. 

TABLE 3 - 1  

ILLUSTRATION OF COMPATIBLE 

PSEUDO INITIAL CONDITIONS 

Control System Pseudo IC' s 

n =  5 ,  m =  3 

xO 

0 
x 
.. 

0 
X 

( 3  
0 X 

- - - b o b o  

= o  

= b3  

= b - a x  
2 4 0  

.. ( 3 )  - a x  - a x  (4) = 
0 bl  3 0  4 0  X 

Model Pseudo I C ' s  

1 = 4 , k = 2  

X = -Po/ao 
m O  

x = o  
mO .. 

X = Pz 
0 

m 

X 

0 m 

Even if the sys tem and model pseudo I C ' s  are incompatible, 

the Model PI  may still provide a good solution, depending on the 

specific situation. 

I = 4, k = 3) if p were  ve ry  small compared to  P 
3 0' 

possible for  the pseudo I C ' s  t o  be numerically c lose  in value, in which 

case  the Model PI would still be  appropriate.  

volving incompatible pseudo IC' s should generally be avoided. 

F o r  instance, in the example of Table 3 - 2  (model'with 

and P2, it may be 

However situations in- 
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TABLE 3-2 

ILLUSTRATION OF INCOMPATIBLE 

PSEUDO INITIAL CONDITIONS 

Control System Pseudo I C ' s  

n =  5 ,  m =  3 

xO = -bo/ao 

= o  

= b3 

&O 
.. 
xO 

(3) = b 2 - a  
0 4 0  

0 

X 

(4) = b l  - a3x0 .. - a4x0 ( 3 )  X 

Model Pseudo IC' s 

1 = 4 ,  k = 3  

X = --Po/Qo 
m O  

X = -P3 

X = p2-cY2 
m O  

*. 

0 3 m  0 m 

(3) = 

mO mo pi - (y i X 

_ -  
- c y  x 

0 3 m  

There  a r e  two types of design problems involving sys tems with 

z e r o s  in which the f i r s t  t e r m  of (3-82) is z e r o  and the Model PI reduces 

to  the form defined in section 3. 2. 1. 

110 zerus arid the nl;r,ber cf poles e q n a l  to  or less than the number of 

excess  over ze ros  in the closed-loop sys tem (1 5 n-m),  then the f irst  

pseudo IC ' s  for the sys t em and model a r e  equal. 

be  scaled to  make the first pseudo I C ' s  the same. 

for  the model a r e  zero ,  as a r e  the next (1-1) f o r  the system. 

f o r e  only the original f o r m  of the Model PI (3-35) needs t o  b e  used. 

If the model is selected to  have 

The input can  always 

The remaining ones 

There-  

The second c lass  of problems in which that is t rue  is when only 

the closed-loop poles of the sys tem have t o  be  considered in the design 

process .  F o r  example, if the design specifications are  given complete- 

l y  in t e r m s  of the closed-loop poles and the closed-loop z e r o s  a re  
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unaffected by the choice of the design parameters ,  then the system can 

be  designed using the Model PI (3-35),  neglecting the pseudo I C ' s .  

This approach does not neglect the e f fec t  of the open-loop z e r o s  on the 

closed-loop poles. 

i l lustrate  the point. 

d iagram of the fo rm shown in pa r t  a. of figure 3-11. 
specifications do  not include the effect of N(a), then one can design the 

system based only on the t ransfer  charac te r i s t ics  f rom u(s )  to  z (s ) .  

The s imple block diagram sketches in figure 3-1  1 

Assume the control system has a functional block 

If the design 

I 1 

(a) Original Feedback Sys tem 

b( s)  Equivalent Open-Loop System 

Figure 3 -  i I Block Diagram of Equivalent Feeciback and Open-Loop Systems 

The special  cases  discussed and the suggestions made for s e -  

lecting appropriate  models do not place any unreal is t ic  res t r ic t ions on 

the use of the Model PI. 

is valid for all the situations considered, although in the special  cases  

noted'it reduces to the s impler  fo rm (3-35). 
ing the model s t ruc ture  a r e  only minor res t r ic t ions  and a r e  good guide- 

The one general  fo rm of the Model P I  (3 -82)  

The guidelines for choos- 

. l ines to  use for any  a'nalytical design technique based on a reference 

71 



model. 

attention in the analytical  design process  than it has  traditionally been 

Selection iVi a n  appropriate  model should be given m o r e  ser ious  

given. 

his specifications but a l s o  haw likely it is that his  analytical  technique 

w i l l  se lect  a design that closely approximates  the model. 

discussed more  fully in Chapter 5. 

The designer should consider not only whether the model fits 

This topic is 

It is instructive at this point t o  consider two s imple academic 

examples f o r  sys tems with ze ros .  The main points t o  be  i l lustrated 

a r e  the effect of the pseudo I C ' s  and the geometr ical  interpretation. 

Since the procedures for  minimizing the Model PI a r e  not t reated until 

the next chapter and are not pertinent t o  the present  discussion, those 

details  a r e  omitted and only the resu l t s  presented. . 

Example 3-3 

Consider the control sys tem shown in figure 3-12 where k and 1 
k are f r e e  design parameters .  The object is t o  se lec t  k and k such 2 1 2 
that the closed-loop s t e p  response approximates that of the model. 

Sys tem 

I I 

Model 

Figure  3-12 Block Diagram of System and Model for  Example 3-3 
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The autonomous sys tem representation of the closed loop system 

transient  response is 

x t [ k l  t k  :I* t [ ~ ] .  = 0 

l t k  l t k  
( 3 - 8 6 )  

. The model ' s  pseudo I C ' s  x o =  -1, - k l  
*O - iTF3 with pseudo IC' s ,  

L. 

a r e  x = -1, k = f i  s o  that the corresponding Model PI  is 
0 m O  m 

P I = r  [ - k1 - fi]' t $s,* (x t f i k  t 2 ) 2 d t  (3-87) 
1 t k2 

The values of k 
three values of the weighting factor ,  r ,  and a r e  l isted in table 3-3 

together with the corresponding values of 5 and j?: 

and k 1 2 that minimizes (3-87) were  computed for  

-0 * - 

TABLE 3-3 

NUMERICAL RESULTS F O R  EXAMPLE 3-3 

-0.45 

-0.86 

-0.91 

The solutions for  r = 0. 0025 and r = 0. 25 a r e  compared to  the model in 

f igures  3- 13 p a r t s  a and b respectively f rom L i l t :  gst:GL*iF;LLi-iC:ii? vix ;p=in t .  
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The solution for  r = 25 is essentially the s a m e  as for  r = 0. 25. 

f igure 3-13 par t  a where the pseudo I C ' s  had a lmost  z e r o  weighting in 

the Model PI, the solution gives a n  - 8-plane that is ve ry  close to  the 

model'  s charac te r i s t ic  plane, but the t ra jec tor ies  differ substantially 

because of the different pseudo IC ' s .  

where the two terms in the Model PI had equal weight, the pseudo I C ' s  

a r e  close,  the charac te r i s t ic  planes are close and thus the t ra jector ies  

are close. 

of the corresponding s t e p  responses  as in figure 3-14. 

of matching the pseudo I C ' s  is clear ly  shown. 

In 

On the other hand, in par t  b 

The t ra jec tor ies  are m o r e  easily compared as t ime his tor ies  

The importance 

Example 3-4 

This next tr ivial  example i l lustrates  a geometrical  interpreta-  

tion of pole-zero cancellation. 

f igure 3-15 where both k and 7 a r e  f r e e  design parameters .  

Consider the sys tem and model in 

Sys tern 

Model 

F igure  3-15 Block Diagram of System and Model for  Example 3-4 
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The t ransient  response of the closed-loop sys tem is given by 

x t ( 2 t k 7 ) X  t k x  = 0 (3-88) 

Since the model is the same  order  - with pseudo IC' s ,  xo - -1, 2 0 
as the number of excess  sys tem poles(see page 69) ,  there  is no quadratic 

penalty on pseudo I C ' s  and the Model PI is given simply by 

= kT. 

PI = lo* (x -t 2 ) 2  dt  (3-89) 

The values of k and T that  minimize (3-89) are  k = 2. 0 and T =  0. 5. 
Referring to  the sys tem block diagram, one can s e e  that for  this value 

of T the z e r o  cancels one pole, reducing the sys tem to  effectively a 

f i r s t  order .  The k chosen then makes the sys tem match the model 

exactly. The result ing closed-loop t ransfer  function is 

(3-90a) 

( 3 -9 Ob) 

( 3 - 9 0 ~ )  

Equations (3-90a) and (3-9Oc) would appear  t o  present  a di lemma 

for representing the sys tem in the geometr ical  sense  of a charac te r i s t ic  

plane and pseudo IC. The s y s t e m ' s  t ra jectory must  l i e  within its charac-  

te r i s t ic  plane yet (3-90a) and (3-9Oc) have different character is t ic  planes. 

Equation (3-90a) has a charac te r i s t ic  plane defined in three-dimensional 

space while equation (3-9Oc) has  a '' charac te r i s t ic  plane" defined in 

t..vc-c!irr,~r?sior?sl snare ,  I- - . i .  e. a line. The only way for this t o  be t rue  

is for  the s y s t e m ' s  t ra jec tory  in three-dimensional space t o  l i e  along 

the intersection of the charac te r i s t ic  plane for  (3-90a) and the extended 

charac te r i s t ic  plane for  (3-9Oc). Then the projection of the t ra jectory 
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into the two-dimensional space would l i e  along the line representing 

the I t  character is t ic  plane" for  (3-9Oc). F igure  3-16 illustrates that 

such is the case.  The s y s t e m ' s  character is t ic  plane, B-'plane, is 

actually the one defined for (3-90a),  which is normal to  
- 

= [ 2  3 11  

with pseudo IC vector 

k' -0 11-1 1 -11 

(3-91) 

(3-92) 

The model'  s character is t ic  plane, &-plane, which a l so  corresponds to  

(3-90c), is normal  to  
- 

1 1  (3-93) 

in two-dimensional space,  with pseudo IC vector 

The extension of the &-plane into the three-dimensional space,  &-plane,  
is normal to  

- - 

(3-95)  

The - Si-plane and the - 8-plane intersect along the s y s t e m ' s  pseudo IC 

vector.  

the intersection, its projection into the two-dimensional space,  the 

xk-plane could not be the pseudo IC for (3-90c),  which is the same as 

the model. 

If the s y s t e m ' s  pseudo IC vector for (3-90a)  did not l i e  along 

One can state that pole-zero cancellation occurs if and only if 

the s y s t e m ' s  psuedo IC vector l ies  along the intersection of the 

character is t ic  and extended characterist ic planes defined with and 

without the cancelled pole. 

higher dime ns ional s paces. Several pole -zero  cancellations w auld 

correspond to the pseudo IC vector lying along the intersection of a 

like number of hyperplanes. 

This  must a l so  be  true fo r  hyperplanes in  
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The coordinate frame 
is denoted by 

X 

S y s t e m '  s Charac te r i s t i c  
P lane  ( 5  - -plane) 

1 S y s t e m ' s  T r a j e c t  

Extension of 
Model' s Charac te r i s t ic  

P lane  (E-plane) 

o r  

F igu re  3 -16  Geometrical  Representation of Pole ze ro  cance l l a t ion  f o r  Example 3 
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The importance of the geometrical  interpretation of pole-zero 

cancellation is basically academic.  

ing a sys tem by a charac te r i s t ic  plane and pseudo IC in the extended 

state space m o r e  complete. 

indicates that the Model PI approach can  r e su l t  in a pole-zero cancella- 

tion. 

It makes the concept of represent -  

F r o m  the pract ical  standpoint it mere ly  

3. 2. 3 Multivariable Systems 

The extension of the Model P I  t o  sys tems with ze ros ,  now makes 

it possible t o  consider multivariable control systems. 

sys tem is completely controllable and completely observable ( 4 3 ) ,  the 

t ransfer  functions of the various input-output channels differ only by 

their  zeros .  

zeros .  

If a multivariable 

Design of such sys tems necessar i ly  involves the effects of 

The intent of this chapter is to  develop the theory of the Model 

PI, leaving the practical  aspects  to  other chapters.  
ment  of a practical  nature should preface this section. 

of a design problem for  a multivariable control system only requires  , 

those input-output t ransfer  charac te r i s t ics  direct ly  governed by the 

design specifications. It behooves the designer t o  reduce ‘these to  a 

minimum number before start ing the synthesis effort. Complicated 

multivariable design problems a r e  not easy by any technique yet de -  

vised. A control system with severa l  input, severa l  control devices,  

and severa i  nieaai;rab?e outpnt ~ . ~ ~ r i a h ! e s  may be represented as a 

multivariable sys tem,  but if the design specifications a r e  only on one 

input-output t ransfer  charac te r i s t ic  it could be t reated a s  a single 

input-output design problem. Multiple feedback to  severa l  control 

devices would be  t reated as inner loops. In other special  cases  it 

may be possible to  select  a model for  one input-output relationship 

that would r ep resen t  a sat isfactory design for  specifications on m o r e  

than one input-output t ransfer  character is t ic .  F o r  example,  if the 

ze ros  of two of the closed-loop t ransfer  functions a r e  unaffected by 

the choice of f r e e  design pa rame te r s ,  a model selected for  one t r ans -  

f e r  function could be referenced to  the other by the r a t io  of their zeros .  

However one com- 

The formulation 
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to more  complex cases  of theoretical  in te res t  should be obvious. 

Two closed-loop input-output t ransfer  functions of a. multivariable 

control system can be writ ten a s  

m 

l 0  
Y 1 b )  b l  s t - - - *  

- m 
n 2 t . . . .  t a s  t a s  t a 

0 
n- 1 - 

U p )  a n - p  2 1 s 

( 3  -96a) 

2 O  
f . * . .  m 

Y 2 ( S )  b2 m 
2 

f . . . .  t a7s t als t a 
- 

0 
n n- 1 

uz( s)  "=-IS w 

( 3  -96b) 

where some numerator coefficients may be zero.  These may represent  

the response different output var iables  to different input var iables ,  

the same output variable (y ,  = y ) to two different input var iab les ,  or 
2 

same  charac te r i s t  
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pseudo IC vectors .  

input-output relationships by one charac te r i s t ic  plane, 

It is possible then to  descr ibe  the sys tem for two 

I ' ( t ) Z  = 0 - -  (3-97) 

and two pseudo IC vec tors ,  Z for (3-96a) and i fo r  (3-96b). F o r  

convenience, a system represented by its character is t ic  plane, normal 

to  ti, and its pseudo IC vector I 

notation {ti; i }. 
t ively by 

-lo -20 

w i l l  be denoted by the shor t  hand 
-0 ' -- 

Accordingly (3-96a) and (3-96b) a r e  denoted respec-  - -0 

T h e  models of the des i red  closed-loop t ransient  response 

can be s imilar ly  descr ibed by one - &-plane and two pseudo 

and denoted by 

(3-98) 

for (3-96) 

IC vectors ,  

(3-99) 

The mclclels (3-99) a r e  assumed to  represent  the design specifications 

for  the corresponding systems (3-98). One would generally not ex-  

pect the same  se t  of values fo r  the f r e e  design parameter  that gives 

the bes t  match of {a; zl } to  {a; 2 } to  a l s o  give the bes t  match 

of (5; g2 } to {a;  j t  
0 

priority for  matching the two models has been established. 

ty a s  well a s  the models a r e  selected by the designer based on the 

actual design specifications a s  discussed in chapter 2. 

0 
- -1m - 

0 
}. Therefore it is assumed that some relative 

0 2m - 
The pr ior i -  

Three synthesis methods for  this c l a s s  of multivariable contr ol 

sys tems using the Model P I  concept a r e  presented. 

probably the most  s t ra ight  forward analytical approach. 

The f i r s t  is 

It defines a 
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performance index that is a weighted sum of the Model PI ' s  correspond- 

ing to  two single input-output design problems, with the weighting based 

on the relative matching priority.  

to implement. 

the weighted averages of the two models (3-99) and of the two sys tems 

(3-98) respectively,  then uses  the single input-output procedure. The 

third approach is to apply the single input-output method al ternately to 

the f i r s t  system and model then t o  the second sys tem and model, with 

selected parameters  fixed in a l ternate  applications. This does not r e -  

quire  any extension in theory over that of section 3. 2. 2,  and can be an 

effective practical  method. 

The second is  l e s s  d i rec t  but s impler  

It defines a new model and hypothetical system that are 

3. 2. 3. 1 F i r s t  Method 

Assume that the priority of matching the two modelk is speci-  

fied by a number, c,  where 0 I c I 1, such that c is the priority of 

matching (2; 2 } to {E; Z } and (1-c)  is the priority of matching - lo  - lmo 

(5; z2 1 to @; s2m }. 

the corresponding Model P I ' s  would be 

If these were two separate  design problems, 
0 0 

(3-  100) 

(3-101) 

where Q, given by (3-36) is the same  for  both. 

problem is to  t r e a t  them jointly with the appropriate  pr ior i t ies .  

d i rec t  approach is to  combine PI 

in such a manner a s  to  ref lect  their  relative pr ior i t ies .  

values of PI and PI may be of gross ly  different magnitudes due to 1 2 
the scale  factors.  

However the design 

A 

and PI 1 2 into one performance index 

The minimum 

Thus a suitable combined performance index is  

II Zlm 11: PI1 t Ikzm It: p12 
PI = 

o w  o w  
(3-102) 
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Minimizing (3-102) with r e spec t  t o  the free pa rame te r s  would then 

produce a design that compromises  meeting the individual performance 

indices in the r a t i o  of their  priorit ies.  

3. 2. 3. 2 Second Method 

The geometrical  interpretation of selecting the sys tem'  s 

charac te r i s t ic  plane to  make its t ra jectory lie close t o  the model'  s 

charac te r i s t ic  plane, motivates this second method. F r o m  that 

viewpoint, the multivariable design process  considered he re  can be 

thought of as a compromise between making the t ra jector ies  of 

{z; gl } and of {a; 1 

with the relative weighting being se t  by the pr ior i ty  number,  c. 

} l i e  c lose to  the model ' s  character is t ic  plane, - -20 0 
In 

order  to  weight the two sys tems correct ly ,  it is necessary t o  scale  the 

t ra jector ies  by normalizing the pseudo IC 's .  

penalizes deviations of the s y s t e m ' s  pseudo IC f rom the mode l ' s ,  it is 

necessary  to a l s o  normalize the mode l ' s  pseudo IC. 

normalized in the mode l ' s  s ta te  space because they are compared in 

Since the Model PI (3-82) 

They must  be  

that space. 

Def;ne a single model that is the weighted average of the two 

models (3-99) as 

(3-103) 

with 

- - 
X X 

(3-104) 0 
-1m -2m 

X - - c  O + (1-c)  

I1 ll E l m  

- 
II 

Iy 

ll WZzm 
0 

N -mO 

0 

- 
X -1m- 

- 
X -2m 

U + (1-c)  U - - 
X - c  

II 
Iy 

ll WZzm 
0 

I1 ll E l m  
N -mO 

0 

(3-104) 

This corresponds to  a t ra jectory lying in the E-plane somewhere be- 

tween the t ra jec tor ies  of the two original models (3-99) each normalized 

by the length of its pseudo IC s ta te  vector.  

the f i r s t  model as c goes to  unity and approaches the second model as  

c goes to  zero.  

The model (3-103) approaches 
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W 

with 

x = c  
0 

N 

The mat r ix  W pro jec ts  any vector in the (nt1)-dimensional space into 

the I-dimensional s ta te  space of the model. 

i 

model ' s  s ta te  space a r e  unit vectors .  

can be compared on the same scale  in the model'  s ta te  space. 

t ra jectory of the system (3-105) l ies  in the &-plane somewhere be-  

tween the two original sys tems (3-98) for  any choice of f r e e  parameter  

values. Its relative location is  dependent on the pr ior i t ies  in the same 

manner a s  for the model. 

The vectors  i and 

a r e  normalized in (3-106) such that their  projections into the 
0 -I 

-20 
This a s s u r e s  that i and zm -0 

The 
0 

This second method proposes to  use the weighted averaged 

model and system in the Model PI design procedure in place of the 

two models and systems.  

single input-output design using the Model PI (3-82) ,  repeated here ,  

The problem is in effect converted t o  a 

(3-82) 
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performance of a weighted average of the two systems.  

the performance is measured by the Model PI criterion. 

c lear ly  not equivalent. 

intent of pr ior i t ies  given for  satisfying the two separa te  specifications. 

However, the second requi res  about half the computational effort in 

the minimization process  as the f i r s t  and in application may be jus t  as 

effective. 

In each case  

The t w o  a r e  

The f i r s t  represent  m o r e  closely the t rue 

3. 2. 3. 3 Third Method 

A l e s s  sophisticated but practical  technique is to  apply the 

single input-output method alternately to  the two coupled systems ( 3 - 9 8 ) ,  

with selected parameters  fixed, until a satisfactory design is established 

for both. 

with respec t  to the most effective f r ee  parameters  in each case ,  until 

one se t  of parameters  i s  determined to  give sat isfactory matching of 

the respective models (3-99). 

to which parameters  a r e  the mos t  effective for  minimizing each per -  

formance index. The l eas t  effective ones a r e  held fixed. In a l ternate  . 
applications the number of f r ee  parameters  is reduced by retaining only 

the most  effective and fixing the others a t  the bes t  value f rom the pre-  

vious minimization. If the minimum or' both PI aid  F I  a r c  cqually 1 2 
sensitive to the same parameter ,  the pr ior i ty  number discussed could 

be used a s  a guide for selecting a compromise between the bes t  values 

of the parameter  for  each minimization. 

That i s ,  al ternately minimize P I  (3-100) then PI2 (3-101) 1 

The designer usually has some ideas a s  

This i terative procedure sounds long and involved, but often it 

F i r s t  of all in practice converges rapidly and is an  efficient method. 

the number of f r e e  parameters  should be kept to a minimum, three or 

four a t  most.  

effective parameters  for one a r e  often the l ea s t  effective for  the other. 

In such a case two or possibly three i terations may be sufficient. 

in highly coupled sys tems relatively few iterations may be adequate if 

parameters  a r e  averaged in the r a t io  of their  pr ior i t ies  af ter  the initial 

minimizations. 

If the two systems a r e  only lightly coupled, the most  

Even 

8 7  



indices that inc 

its derivatives,  

cept of relating the weighting fac tors  to  the des i red  response m 

Aizerman’ s and Rekasius’ works a r e  reviewed briefly i 

to indicate the conceptual s imi la r i t i es  and point out som 

and difficulties in their  application. 

Aizerman originated the concept of specifying the des i red  r e -  

sponse of an autonomous system in a performance index by using a 

linear combination of the squares  of the output and its derivatives.  

system considered is of the general  form 

The 

t a x t a k t a x = 0 (3-107) (n-l)  f . . .  . 
+ an-1X 2 1 0 

( n) X 

with constant initial condition. The coefficients a f o r  i = 0, 1; - -, n-1, 

a r e  functions of the f r e e  design parameters .  

performance index proposed is 

i’ 
The general  fo rm of the 

(3-108) 

where the weighting fac tors  T a r e  determined b y  the charac te r i s t ic  

equation of the des i red  response.  
j 

an  only considered in detail  the case  for rl = 1 which 

reduces (3-108) to  

2.2 00 

I =  f (x2  t 7 x ) d t  (3 -  109) 
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By completing the square  of the integrand it can be put in the form 

xli: d t  2 I = ioW (X t 7 2 )  dt  ,- 27 

The second integral can  be evaluated direct ly  to  give 

I = s,” (x  t 7k)  2 d t  t 7x(o) 2 

(3-110) 

(3-111) 

assuming the sys tem is asymptotically stable,  i. e. X(W)  --c 0. 

Since the l a s t  t e r m  of (3-111) is independent of the f r e e  design 

parameters ,  the absolute minimum value of (3-111) occurs  if the f r e e  

parameters  a r e  chosen such that the integrand is  ze ro ,  i. e’. 

x + T 2 = 0  (3-112) 

Aizerman s ta tes  

response which can be  approached in the l imi t ,  if it is possible to 

the differential equation ( 3  - 11 2) defines the t ransient  

iz e rman  select  the parameters  in such a way that I =  I min min’ (A’ 
denotes the absolute minimum value of I as I in this case  

I 

exponential x( t )  = x(0) e 

min m in’ 2 = T x ( 0 )  . ) The optimum response is described by the min min 
- t /T . 

The value of T shall  be selected in such a way that the expo- 

nential will satisfy the specifications of the t ransient  response.  ’’ 
One might erroneously conclude f rom this simple example 

considered by Aizerman that the Model P I  is equivalent t o  Aizerman’ s 

performance index. 

resul t .  

then one would re ta in  more  t e r m s  in (3-108). 

fac tors  T .  do not have a simple relationship to  the coefficients of the 

mode l ’ s  character is t ic  equation except for  the first order  model 

case .  

tionship as m o r e  t e r m s  a r e  retained in (3-108). 

on the other hand, is wri t ten direct ly  in t e r m s  of the mode l ’ s  

F o r  this s imple case  they would give the same 

If higher order  models of the des i red  response a r e  necessary 

However the weighting 

J 

It becomes increasingly m o r e  difficult t o  es tabl ish this re la -  

The Model PI (3-35), 
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charac te r  ist 

There a r e  three ser ious  

4 ..2 [x2 t 72k2 t 72x ] dt I = lo* 1 (3- 113) 

Completing the square a s  before and integrating whe gives 

I = lom [x t q- k t 7 2 X I 2  dt t f ( x o ,  xo) 
2 

The second t e r m  is of no interest  

pendent of f r e e  parameters .  The 

(3- 114) 

here because x and 2 a r e  inde- 

min min I 
0 0 

occurs if 

x .. t 2- dr2 t 2r2 ‘ i 
2 1 2 
2 7 

Using this approach, the designer 

represents  the des i red  response.  

ration for (3-115) a r e  

1 
T U  2 

t y x =  0 (3 - 1 15) 

se lec t  7 and T s o  that (3-1 15) 
The natural  frequency and damping 

1 2 

(3-116) 
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IMAGINARY 
AXE 

Model Poles 

Allowable Region 
for Model Poles  

REAL AXIS 

Figure 3-17 Restrictions on Choice of Second Order Models in 
Aizerman'  s Approach 

Similar but more  complex restr ic t ions apply to higher order  

models. 

model poles. 

The Model PI clear ly  has no restr ic t ions on the choice of 

The second limitation is that this approach does not provide 

any way  t o  consider models with zeros .  Relating the integrand of the 

performance index in the completed square fo rm,  such a s  ( 3 - 1  14), to  

the desired response represents  models with poles only. There is no 

way to include the effect of model zeros  in Aizerman'  s performance 

index. 

The third l imitation is that it is not valid for  systems with 

ze ros  in general. 

tem by an autonomous system and suitable initial conditions (pseudo 

I C ' s ) ,  but did not consider the case for systems with ze ros  in which 

Aizerman represented the step response of a s y s -  
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the pseudo I C ' s  a r e  generally functions of the f r e e  parameters .  

such a situation the argument ,  that  the absolute minimum of the per -  

formance index occurs  when the integrand in the complete square  

form is ze ro ,  becomes invalid. 

would be a function of the free pa rame te r s ,  and it may  be  possible to  

produce a smal le r  value of I by decreasing f(x 

smal l  nonzero value of the integral. 

section 3. 2. 2,  specifically t r ea t s  models and sys tems with zeros .  

Under 

F o r  example, in (3-114), f(xo, Go) 

2 ) and accepting a 
0' 0 

The Model PI, as extended in 

3.  3 .  2 Review of Rekasius '  Work (Reference 19) 

Rekasius observed that Aizerman'  s performance index r e -  

s t r ic ted the location of model poles and excluded models with ze ros ,  

and proposed a somewhat different one. 

model poles, is a more  convenient form t o  use than Aizerman'  s ,  but 

fails to  t r ea t  models and systems with zeros  properly., Rekasius '  

general  performance index is 

It lifts the rest r ic t ions on 

By completing the square  of the integrand and integrating where 

possible, it reduces to  

I = lom [ x t $ T i x ( i ) ] 2  dt  

i= 1 
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Rekasius then s ta tes  " the absolute minimum I 
formance index occurs  when the integrand of (3-118) is equal t o  zero.  

Consequently the charac te r i s t ic  equation of the ideal model for  the 

proposed performance index (3-1 17) 

of this per -  min  min 

x t r k  t r i i  t 1 2 

The ideal model itself can 

the t ransfer  function 

( 3 -  119) .... t r x  (1) = 0 
I 

be represented by a closed-loop sys tem with 

1 I' 

rl-1 f .... t r s 2 t  r s  t 1 q - l S  2 1 r SI t r 
I 

( 3 - 1 20) 

Rekasius r e f e r s  to  the model as the 'I ideal model" in the 

sense  that if a sufficient number of unconstrained parameters  were  

chosen to  minimize the performance index (3-117) the control sys tem 

would b e  the same  as this ideal model. The first  goal of removing the 

res t r ic t ion  on the location of the mode l ' s  poles is me t  by (3-117) sin& 

there  a r e  no res t r ic t ion  on the choice of r .  in (3-120). 

performance index can be  writ ten down direct ly  f rom the model t r ans fe r  

function, which avoids the extra  computations required in genera1 to  

form Aizerman'  s performance index. 

PI and Rekasius '  performance index a r e  the same.  

out zeros  the l a s t  t e r m  of (3-118) is z e r o  and the next to last t e r m  is 

constant, s o  that the two performance indices (3-35) and (3-118) a r e  

equivalent in that case.  

Also the 
L 

In these two respec ts ,  the Model 

F o r  sys tems with- 

However Rekasius '  performance index does not provide for  

models with zeros  any m o r e  than does Aizerman'  s ,  although that w a s  

one of the objectives of Rekasius '  work. Fu r the rmore ,  if the system 

considered has z e r o s ,  Rekasius '  performance index is not even valid 

except for aztm pezial cases .  

Rekasius observed correct ly  that the performance index mus t  

depend on the model'  s pseudo I C ' s  in order  t o  differentiate between 

models that have the same  poles but different zeros .  This fac t  
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motivated the selection of the fo rm 

in reference 19 are: 

have to  the ideal mode 

2) What relation 

quadratic functional? 

I C ' s ,  as defined in section 3. 1, t o  have any meaning for  sys tems 

with zeros .  

of the f r e e  parameters .  

As pseudoIC' s of the sys tem,  they are  in general  functions 

If one a s sumes  they are a l s o  the pseudo IC ' s  

of the model,  severa l  problems arise. First of a l l ,  ' if the sys tem and 

model a r e  of different order  it may be impossible for the pseudo I C ' s  

to  be  the same.  

section 3. 2. 2 would reduce the likelihood of that occurring. Secondly, 

even if they can be  the s a m e ,  one can not requi re  this equality without 

placing a n  undesirable constraint  on the f r e e  parameters .  

cases  such a n  equality constraint  would completely determine the 

Complying with the compatibility r u l e  suggested in 

In some 1 

parameters  and the integral  portion of (3-  118) would b e  superfluous. 

Thirdly, if the equality of pseudo I C ' s  is not explicitly included in the 

performance index the model'  s z e r o s  become superfluous. Therefore  

the initial conditions included in (3-118) are  not actually relevant to  the 

ideal model. 

The pseudo IC' s that m u s t  b e  used in (3- 118) are related t o  the 

sys tems ze ros  by equation (3-8). 

(3-  118) is not only i r re levant  but actually destroys Aizerman'  s original 

concept that I The last 

term of (3-118) is a function of the free pa rame te r s ,  s o  that it is en t i re -  

l y  possible t o  obtain a smaller value of the performance index at a point 

w h i e  ilie iiitegrand is not zero-  

with Aizerman'  s performance index. Rekasius '  perfor 

is s imi la r ly  invalid for  sys tems with z e r o s ,  

cases. 

Including them in the manner  of 

be obtained when the integrand is zero.  min min 

T h i s  i s  the s a m e  difficulty encountered 

These exceptions occur when the pse 
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of the f r e e  pa rame te r s  even though the sys tem has zeros .  By re fer r ing  

to  equation (3-8) one can see that this is possible if none of the numera-  

tor coefficients, bi, and none of the denominator coefficients appearing 

in (3-8) a r e  functions of the free parameters .  In that situation the last 

t e r m  of (3-118) is independent of the f r e e  parameters  and thus can b e  

discarded as far as the minimization process  is concerned. In which 

case ,  Rekasius '  performance index becomes equivalent to  the Model 

PI. 

The third question posed ea r l i e r  about the particular combina- 

tion of initial conditions included in (3-118) now becomes academic.  

There  appears  to be no justification for  this particular selection over 

other possible ones. 

reduced to  the same  form a s  (3-118) with the addition of t e r m s  de-  

pending only on the pseudo I C ' s .  

any such quadratic functional would be  equivalent in application to  

Rekasius '  performance index. 

Other quadratic functionals exis t  that can be 

F r o m  the argument presented he re ,  

3. 4 Summary of Results 

The main resu l t s  of this chapter are summarized he re  for 

easy  reference and application. Table 3-4 summar izes  the relation- 

ship between the t ransfer  function representation of a sys tem and the 

geometrical  representat ion by its character is t ic  plane and pseudo IC 

vector.  

t ransfer  function into the fo rm required for  using the Model PI. 

3-5 is a guide to  selecting the model s t ruc ture  for  the Model PI as 

well as a summary  of the Model PI €or single input-output sys tem 

application. 

preference for  b e s t  resu l t s  with the Model PI. 

to  section 3. 2. 3 for application to  multivariable systems.  

Using this table one can quickly convert a system or  model 

Table 

The choices of model s t ruc ture  a r e  l is ted in order  of 

The r eade r  is r e fe r r ed  
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CHAPTER 4 

NUMERICAL OPTIMIZATION METHOD 

After defining a performance index the next step in parameter  

optimization design techniques is to  minimize it with respect  t o  the f r e e  

design parameters .  

ly ,  as is done in Appendix A ,  but few practical  control-system design 

problems afford a n  analytic solution and must  be solved by numerical  

techniques. 

mization of the Model PI a r e  derived and one optimization algorithm is 

p r  e s ented. 

It i s  instructive to solve simple examples analytical- 

In this chapter the expressions needed f o r  numerical  mini-  

The Model PI is a nonlinear, generally non-quadratic, function 

of the f r e e  design parameters .  

have multiple stationary points over the 2arameter  space. 

methods for finding local minima for such a function a r e  reviewed in 

re ferences  20 and 21. 

Model P I  and its application ra ther  than numerical  optimization tech- 

niques, no effort is  made here  to seek out the most  efficient optimiza- 

tion method. 

It is a non-negative function and may 

Several  

Since the main emphasis of this thesis is on the 

It is possible to evaluate the Model P I  ( 3 - 3 5 )  using Parseva l '  s 

theorem and either tabulated integrals ,  which a r e  available in severa l  

textbooks, e .  g. Newton, Gould and Kaiser  (15) or Gauchy' s residue 

theorem. A simpler  method for  general  quadratic functionals, suggest-  

ed by Kalman and Ber t r an  (42), is presented in section 4. 1. 

section establ ishes  the f i r s t  o rder  necessary conditions for a local 

minimum by using mat r ix  variational calculus in a manner somewhat 

s imi la r  t o  Johansen (44) or Denham and Speyer (45). 

The next 

It is only practical  
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to  solve these analytically for simple academic examples.  

this leads to  a d i rec t  method for  evaluating the gradient ( s e t  tion 4. 3) 

that can be used in a numerical  optimization technique. 

However 

The algorithm used to minimize the Model P I  is presented in 

section 4.4.  

dient direction. 

t o  other available techniques, but it proved quite adequate for  all the 

design problems t reated here .  In applying the Model PI ,  the r eade r  

may wish to  use some other numerical  optimization method that he is 

m o r e  famil iar  with or  feels  is m o r e  efficient. 

chosen, if it requires  evaluation of the performance index and its g r a -  

dient, the developments in sections 4. 1 and 4. 3 are  s t i l l  quite useful. 

The s ta te-space formulation of the design problem and the ex- 

It is a fa i r ly  simple technique based on a n  averaged g r a -  

No  claims a r e  made for  its relative efficiency compared 

Whatever technique 

press ion  derived he re  make it possible to  establish general  digital 

computer programs for  designing l inear  control sys tems.  

necessary  to  wri te  a new program for  every new design problem. 

Such a program is descr ibed in Chapter 5 and Appendix B that only 

requi res  a minor subroutine and different input data ca rds  to  change 

f rom one design problem to another. 

with m o r e  efficient numer ical optimization techniques if des ired.  

It is not 

Similar  programs can be writ ten 

In each of the following sections,  the derivations a r e  presented 

first for  a general  quadratic functional, then extended to  the Model PI. 

This is done for two reasons.  It is eas ie r  to  follow the details  of the 

derivations for the general  case than for  the Model PI. And, the 

general  resu l t s  should be  useful in themselves,  since the general  quad- 

ra t ic  functional is frequently used in modern control theory. 

4. 1 Evaluation of a Quadratic Functional 

Consider the l inear  autonomous sys tem 

with initial conditions x(0) = x 
then the quadratic functional 

If the sys tem is asymptotically stable, - -0' 
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where Q is a symmetr ic ,  positive semi-definite mat r ix ,  is equivalent 

to 

2 

J = I I  50 I t  
P 

(4- 3) 

where P satisfied the mat r ix  a lgebraic  equation 

F'P t PF = -Q (4-4) 

This is  a lmost  the second half of a corol lary to  Lyapunov' s well known 

theorem on stability of l inear  invariant systems (42). ,The only difference 

is that he re  Q is allowed to be positive semi-definite. 

easily shown to be t rue ,  but the converse,  with Q semi-definite,  is not 

The resul t  is 

necessar i ly  true.  
:; 

Using the solution to  (4-1), 

F t  x = e x  - -0 

in (4-2)  gives 

F'tQeFtx d t  J = r," -0 XI e -0 

If P is defined a s  

P = r" eFItQeFtdt  

(4-5) 

(4-6) 

(4- 7) 

then (4-6) becomes (4-3). 
(46) for a solution to (4-4). 

The expression (4-7) for P is a known form 

* 
Time arguments  a r e  suppressed in equations where the meaning is 
c lear .  
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Any quadratic functional of the f o r m  (4-2) can be evaluated by 

If one wished solving (4-4) for P which is then substituted into (4-3). 

t o  g o  through the algebraic  exerc ise ,  it would be  possible to  reestablish 

the tabulated integrals in Newton, Gould and Kaiser  (table E. 2-1 in 

reference 15) using this approach. Althou&it is possible to  evaluate 

the quadratic functional (4-2) analytically, the r e a l  usefulness of this 

approach is that one digital computer program can  be writ ten t o  evalu- 

ate i t  numerically for  any order  system. 

Solving the algebraic  ma t r ix  equation (4-4) may not be the most  

efficient way on a digital computer. 

a te  method is  t o  compute P as the steady-state solution of the l inear  

mat r ix  differential equation 

A possibly f a s t e r  and m o r e  accu r -  

P = F'P t PF t Q (4-8) 

for  a n  a rb i t r a ry  initial condition P(0) .  

positive semi-definite solution if F is a stable ma t r ix  and Q is positive 

semi-def inite (46).  

Equation (4-8) has  a unidue, 

The Model P I  (3-82) can b e  evaluated s imi la r ly ,  with simple 

modifications. It is defined in t e r m s  of the extended state vector 

which can be related to  the s ta te  vector by 

where M is a n  ( n  t 1) X n partitioned ma t r ix ,  

The Model PI (3-82) can  be writ ten as 

(4-  10) 

(4-  11) 

where Q is given by (3-36) and W is related t o  "w (3-81) by 
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(4- 12) 

Relating (4-11) to (4-2), it is c lear  that the Model PI can be evaluated 

by 

where P sat isf ies  

F’P + PF = -MGM 

(4- 13) 

(4- 14) 

4. 2 Necessary Condition for  a Local Minimum 

The f i r s t  order  necessary  condition for  a local minimum of a 

general  quadratic functional of the form (4-2) is derived then extended 

to  the special case of the Model PI. The system (4-1), is assumed to  

be asymptotically stable and in the phase-variable canonical form,  i. e. 

F =  (4- 15: 

and the coefficient vector ,  - a ,  is some function of the f r e e  parameter  

vector e, i. e. 

F o r  the present ,  the initial condition vector ,  x is  assumed to be inde- 

pendent of p Late r ,  when extended to the Model PI, it w i l l  correspond 

to  the pseudo IC vector (3-18) which may depend on 

-0 ’ 

The problem i s  to  determine the f i r s t  order  necessary condition 

The quad- that E must  satisfy for (4-2) to  have a local  minimum value. 

ra t ic  functional (4-2) can be  writ ten a s  
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J = t r  [ QIom 55' dt  ] (4-17) 

where t r  [ ] indicates the t race  of the mat r ix  [ 1. Define a matr ix  

X as 

= 3, x5' dt 
(4-  18) 

which is c lear ly  symmetr ic  and positive semi-definite.  

(4-5) into (4-18) gives 

Substituting 

X = iom eFtx -0-0 x '  eFIt dt  (4-  19) 

which is easily shown (46) to be a solution of the mat r ix  algebraic 

equation. 

F X  t X F '  = -Xo (4-20) 

where X = x x' 0 -0-0' 
Using (4-18) in (4-17) the problem can be restated a s  follows: 

determine the necessary  condition for E to locally minimize 

J = t r [ Q X ]  (4-21) 

subject to the constraint  (4-20).  

method for constraints by adjoining (4-20) to (4-21) with a Lagrange 

multiplier mat r ix  P. 

This can be solved using Lagrange ' s  

It is sufficient to add 

t r  { P [ F X  t XF' t X o ] }  (4-22) 

to  (4-21) in order  to  constrain every element of X to satisfy (4-20), s o  

that P can be assumed to  be  symmetr ic  without loss of generality. 

The augmented J becomes 
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J = t r  { Q X  t P [ F X  t XFI t X ] } (4-23) 
0 

Both X and F depend o n 2  s o  that a f i r s t  order  variation in J 

due to  a variation 62 is 

6J = t r  {Q6X t P [ 6FX t F 6 X  t .5XF1 t X 6 F '  ] } (4-24) 

The variation 6 F  can be determined directly in t e r m s  of 62 f rom (4-15) 

and (4-16) as 

6 F  = -E Q'A' -n 

wherezn  is an  n X 1 vector defined as 

E '  = [ o  0 o * - * o  1 1  -n 

and A is the sensit ivity matr ix  of - a with respec t  t o e ,  i. e. 

(4-25) 

(4-26) 

(4-27) 

Using (4-25) in (4-24),  the variation of 6J becomes 

65 = t r  { - 2 ~ '  P X A 6 e  + [PF t F'P t Q ] 6 X )  (4-28) -n 

If J is a t  a minimum value, then to  f i r s t  o rde r ,  the variation 65 due to 

6~ must  be ze ro ,  for a r b i t r a r y  6~ and 6X. Therefore  E must  satisfy 

F X  t X F '  t Xo = 0 

F ' P  t PF f Q = 0 

6' PXA = 0 -n 

(4-  29a) 

a t  any minimum point. 

condition for a local minimum of the quadratic functional (4-2). 

Equation (4-29) is the f i r s t  order  necessary 
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It is interesting to  note that the Lagrange multiplier matr ix ,  P, 
is exactly the mat r ix  satisfying (4-4) needed to  evaluate the quadratic 

functional. Once the necessary  condition (4-29) is solved, the minimum 

value of the quadratic functional is easi ly  computed f r o m  (4-3). 
Extending this r e su l t  t o  the Model PI (4-11) involves two addi- 

tional considerations: 1) the s ta te  vector weighting matrix contains M 

which is dependent onE;  and 2) the pseudo IC vector is dependent onE,  

so  that X and the t e r m  r 11 x - x 11 a re  a l s o  dependent on 2. The 

derivation closely parallels the previous one. 

additional t e r m s  a r e  considered below. 

2 

-mo w 0 -0 

Where possible only the 

The augmented performance index, corresponding to  (4-23), is 

] t M'6MX 
0 Xmm 0 m PI = t r  { r W I X o  - W( 

t - P [ F X  -t X ' F  t X o ] )  (4-30) 

where 

= x x' 
0 -0-m X 

m O  
(4-3 1) 

- - x x' 
0 0 0  -m -m mm X 

Taking the first variation of (4-30) adds two variational t e r m s ,  

t r  { 6 [ M ' 6 M ] X }  (4-32) 

and 

tr { [ r w  t P ] ~ x ,  - 2 r ~ 6 ~  } (4-33) 
mo v 

over the corresponding fo rm for  6(PI) (4-28). 
these to functions of 6 2  before writing down the complete 6(PI). 

It is worthwhile reducing 

By re fer r ing  to  the definitions of z, - 6, and M f r o m  (3-36), (3-44), - 
and (4-10) respectively,  it is possible t o  w r i t e  the term M'QM as 
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MGM = I [ I1 2II" 
(4-34) 

where 

I 

(Y is the I X 1 model coefficient vector 

0 

is the n X n identity mat r ix  

- 
is the ( n  - I )  X null vector - 

Observe in (4-34) that - a is always multiplied by z e r o  unless n = I .  
Since - a is the only quantity in (4-34) depending o n e ,  the variation (4-32) 
due to 6~ is therefore  z e r o  for n = I .  If n = I, (4-34) becomes 

s o  that (4-32) is 

t r  { 6[M16M]X}= -2 t r  [ (;;; ae*lx] 

F o r  notational convenience, define a sca l a r  v such that 

i f n #  P 

if n =  P 

The general  fo rm of (4-32) can be  writ ten a s  

(4-35)  

(4-36) 

(4-37) 

(4-38) 
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The second additional term, (4-33) can  b e  writ ten in terms of 

tip. by defining a sensitivity matrix, B y  f o r  the pseudo IC vector as 

(4-39) 

and expanding (4-33) as 

2 tr { rW(xo  - x ) &'BE t P x g 6 e 1 B 1 )  
-0 

(4-40) 

The variation in P I  (4-30) due to  a variation is obtained by 

combining (4-38) and (4-40) with (4-28),  using the a p p r o p r i a t e  choice 

of Q. 

XA - 5bPB - a) '   PI) = tr t v (E - 
II ZII 

2 

- r(xo - x  )IWB] tip. t [PF t F'P t M1zM]6X 
-mO 

(4-41) 

The necessary  condition for  a local minimum of the Model PI 
(4-11) is 

F X  t XF1 t X o  = 0 (4-42a) 

F ~ P  t PF t MGM = o (4-42b) 

(y - 5)' 

I I  Ly I I  
XA - x ' P B  - r(x0 -% )'WB = 0 

0 2 -0 
E'PXA t u n 

( 4 - 4 2 ~ )  

The value of the Model PI at this minimum can  be  computed f rom (4-  13) 
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using the solution of P f r o m  (4-42b). 

The equations in (4-42) are  heavily coupled in general. 

quantities F, Xo, M, A, 2, xo, and B have explicit functional depen- 

dence on 2, and the quantities X and P have a n  implicit dependence on 

The 

E given by equation (4-42). Since X and P are n X n symmetr ic  
1 mat r i ces ,  (4-42a) and (4-42b) each represent ,  at  most ,  Zn(n t 1) l inear ly  

independent equations. 

K is the number of f r e e  pa rame te r s ,  i. e. the dimension of E. 
(4-42) represents ,  at most ,  K t n ( n  t 1) l inear ly  independent equations 

that mus t  be solved fo r  the elements of X, P and E. 
would not be an  easy  or enjoyable task to  do  by hand. 

suited to  digital computation. 

to  a method for computing the gradient of the Model PI-that can be used in 

var ious numerical ,  i terative minimization techniques. 

Equation (4-42c) represents  K equation where 

Altogether 

Obviously that 

Neither is it w e l l  

However this development leads directly 

4. 3 Direct  Gradient Evaluation 

The gradient of the general  quadratic functional (4-2) is directly 

obtained f rom (4-28) as 

(4-43) 

where X and P are evaluated by (4-29a) and (4-29b) respectively. 

The gradient,  V J ,  is a K X 1 vector and is a function of E. 
i terative technique, VJ.  would be  evaluated at E. on the ith iteration. 

Instead of using the matrix algebraic  equations (4-29),  Xi and P. can 

be  computed as the steady s ta te  solutions of l inear  mat r ix  differential 

equations as suggested in section 4. 1. 
functional and its gradient on the ith 

In a n  

1 1 

1 

The value of the quadratic 

i teration can be computed f rom 

2 - - II x() II Ji  
pi 

VJ = -2A!X.P.e i i 1 1-n 

Xi = F . X .  t X.F!  t X o  
1 1  1 1  

(4 -44a) 

(4 -44b) 

(4  -44c) 

Gi = F!Pi t P.F. t Q 
1 1 1  

(4  -44d) 
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-B!PiXO - rB!W(x - x (4 -45b) 
-0 1 -oi i 1 

= F . X .  t X i F f  t Xo 
i 1 1  

xi 

P = P.P. t P. F. t ~ 1 5 ~ .  
i 1 1  1 1  1 1  

(4-45c) 

(4  -45d) 

where so., Ai, a i ,  Bi, F i ,  Xo and M. a r e  a l l  evaluated a t  E. and 

X.( 0) and P . ( O )  a r e  a rb i t r a ry  symmetr ic  positive semi-definite matr ices .  

Fo r  reference in the above equation, the definitions of some t e r m s  a r e  

denoted by equation number below. 

1 1 
1 i 

1 1 

T e r m . .  . . . defined by..  . . . equation number 

A (4-27) 
E (4-26) 
11 

V (4-37) 
B (4-39) 
w (4- 12) 

M (4- 10) 

Equations (4-44) and (4-45) 
They can be used in any num 

ui res  evaluation of the gradient. 

e well suited for digital 

ical optimization techniq tion. 
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In the application of (4-45) it may be easier and sufficiently 

accura te  to  compute the sensitivity matrices, A. and Bi, numerically 

ra ther  than f rom their functional relationship to  2, e. g. 
1 

(4-46) 

The gradient or s teepest  descent method is probably the simplest 

computational algorithm for  seeking the minimum of a function over a 

parameter  space. 

This is i l lustrated in figure 4-1, which shows contours of constant 

function values in the p and p parameter  space. When the computa- 

tion path c ros ses  a ravine it tends to  jump back and for th  a c r o s s  it, 

making slow progress  in the direction of the t rue  minimum. 

however, that the average gradient direction fo r  two s t e p s  is generally 

in the des ired direction. The averaged gradient direction optimization 

algorithm presented here  is based on stepping in that  direction. 

specific procedure is i l lustrated in figure 4-2. 

method is to take a half step in the negative gradient direction to  point 

la. The average direction of the negative gradient at points 1 and la is 

computed. Take a full s tep f rom the midpoint between 1 and la  in the 

averaged direction to point 2. 

But it suffers severely f r o m  the '' ravine problem".  

1 2 

Notice, 

The 

Starting at point 1 ,  the 

The actual s tep for this i teration is then 

f r o m  point 1 to point 2. Repeat at  point 2,  etc. 

It is necessary  to  have some s tep s ize  control so that the process  

w i l l  converge as  it approaches the minimum. 

used. At each point, such as la and 2 in figure 4-2, the function is 

evaluated and compared to  the value a t  the s tar t ing point for  that i tera-  

A very simple rule  is 

tion. If the new value is sma l l e r ,  proceed with the previous s tep size.  

If i t  is l a r g e r ,  cut the step s ize  in half, evaluate the function and com- 

pare  again. Repeat until the new value is smaller .  Thus the new 
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Contours of Constant 
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/ 
Optimization Pa th  

F i g u r e  4-1  Il lustration of the Ravine Problem in the Gradient Method 

p2 

2 

Actual Averaged 
Gradient Direction 
Step f rom 1 t o  2 

Neg. Gradient 
Direction at 

Point la Between 1 and la 

P1 

Figure  4-2 The Averaged Gradient Direction Step 
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i teration point always has a function value smal le r  than that a t  the old 

point which guarantees convergence. 

The averaged gradient method has great ly  improved convergence 

character is t ics  over the conventional gradient method. 

shows a comparison of these two for minimizing the same function for 

Figure 4-3 

two different start ing points. 

example in section 5. 1. 1 of the next chapter but its specific formulation 

is not important for this comparison. The conventional gradient method 

shown in figure 4-3a has the same  type step s ize  control as mentioned 

above. The ravine problem is c lear ly  visible. In figure 4-3b, the 

The function is the Model PI for  the 

averaged gradient direction method is shown to  converge towards the 

t rue  minimum much fas te r .  A third start ing point is shown in figure 

4-3b to i l lustrate  how the averaged gradient direction method works 

away f rom the ravine.  

Another important point in numerical  optimization algorithms 

is the stopping condition. 

minimum is close enough. 

function and its gradient to  c rea te  sufficient 

of the minimum f o r  the algorithm to continue searching for  it unless 

given some measure  by which to  terminate.  

averaged gradient method. 

in the performance index is l e s s  than 0. 01% between two iterations and 

the length of the gradient vector t imes the cur ren t  step s i ze  is l e s s  than 

0. 1% of the performance index. 

sufficient, but it can be sat isf ied by straddling a ravine a t  any point 

such that the value of the performance function is nearly the same on 

both sides.  

ping the program. 

Some way is needed t o  tell how close to  the 

There is enough e r r o r  in computing the 

noise" in the vicinity 

Two t e s t s  a r e  used in the 

The program terminates  if both the decrease  

One might think that the f i r s t  t es t  is 

The second tes t  prevents that situation f rom falsely stop- 

A simplified functional flow diagram for  the averaged gradient 

direction optimization algorithm is shown in figure 4-4. 

is used in the program described in Appendix B. 

the function J indicated on figure 4-4 is the performance index, PI, 
and is computed together with its gradient, V ( P I ) ,  by equation (4-45). 

This algorithm 

In that application 
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CHAPTER 5 

DESIGN VIA PARAMETER OPTIMIZATION 

The previous two chapters  presented the theoretical  develop- 

ment of the Model PI and some mathematical  techniques necessary 

€or its practical  application. 

designing control sys tems by parameter  optimization with the Model P I  

a r e  considered. 

design problems with real is t ic  engineering design specifications is 

presented and demonstrated by examples. 

tween the Model PI and the model-referenced ISE design methods to  

evaluate their relative effectiveness and computational efficiency. 

model-referenced ISE technique is formulated in s ta te-space notation 

in such a way that the same  general  computer program for  control 

system design can be used for both techniques. The procedure for 

using this computer program is demonstrated in the examples presented. 

In this chapter the practi-cal aspects  of 

The s tep by s tep procedure €or using the Model PI in 

A comparison is made be-  

The 

In some applications the designer may want to  constrain the 

magnitude of the f r e e  design pa rame te r s  because of known physical 

limitations. There  are severa l  ways this can be  done. Some methods 

for  including parameter  constraints in analytical design techniques a r e  

presented here  although they a re  not unique to  the Model P I  approach. 

This chapter t r ea t s  l inear  control sys tems in general  ra ther  

than specifically flight control sys tems.  

application is established. 

of the basic  procedures by avoiding some of the details  involved in formu- 

lating a specific flight control sys tem design problem. 

the engineering design specifications considered he re  are  of the fo rms  

Thus a wider bas i s  of potential 

It a l s o  allows for a m o r e  concise description 

Accordingly, 
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m o r e  common to  general  control sys tem design problems (section 2. 1. 2) 

ra ther  than those related s t r ic t ly  to  the design of flight control systems 

(section 2. 1. 1). 

The bas ic  design procedure is presented for  single input/output 

Extension to  multivariable sys t ems  should be  c l ea r  f r o m  the systems.  

discussion here  and in section 3. 2. 3 of Chapter 3. 
system design example is presented in the next chapter that 'should help 

clarify any remaining questions. 

A multivariable 

The procedure for  using the Model PI  to  design l inear  control 

systems follows the general  procedure for analytical design discussed 

in Chapter 2 ,  section 2. 2. 

tions for  the dynamic response of the closed-loop sys tem a r e  given in 

one of the two s tandard graphical representat ions discussed in section 

2. 1. 2. 

f o rms  a r e  presented. 

tions, the basic  Model PI design method proceeds as outlined in the follow- 

It is assumed he re  that t hedes ign  specifica- 

Design examples for  both the t ime domain and frequency domain 

Starting with these engineering design specifica- 

ing s teps :  

1. 

2. 

3. 

4. 

5. 

Select a l inear  model t o  represent  the dynamic response 

s pe c if ica t ions. 

Select a compensation configuration for the control system. 

F o r m  the closed-loop t ransfer  function as a function of 

the f r e e  design parameters .  

Apply the general  computer program for  control sys tem 

design (Appendix B). 

Compare the result ing closed-loop design to the engineering 

specifications. 

w ith a differ ent c omp ens at ion c onf ig ur a t ion. 

If they a r e  not satisfied repea t  s t e p s  3 to  5 

Some variations in these s teps ,  especially s t e p  5, may b e  necessary  

for  particular design problems. 

The first s t e p ,  selection of a n  appropriate  model, is not a 

trivial  task and should b e  given m o r e  ser ious attention in the analytical 

design process  than it has  in the pas t .  L i  and Whitaker (41) discuss  
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some aspects  of selecting models for  character iz ing the performance 

of adaptive control sys tems that would a l s o  apply to  the analytical 

design problem for  non-adaptive systems.  But often the model is 

taken to  be  the s tar t ing point in analytical design processes ,  completely 

ignoring tae fact  that practical  design specifications must  include a 

tolerance. The model p e r  s e  is not 'I the" specification. 

In the Model PI, the model is used as a guide t o  the actual engi- 

neering design specifications wnich a r e  given as a range of allowable 

closed-loop responses ,  e. g. f igures  2-5 and 2-6. The objective is to  

select  a model that  has  a good chance of forcing the closed-loop sys tem,  

via the optimization process ,  to  have a response that l i e s  within the 

allowable range. 

he uses  would indeed produce such a design. 

yet, no s e t  of ru les  fo r  selecting a model that can guarantee this,  
whether using the Model P I  or any other model-referenced performance 

index. 

of the Model P I  that can help in selecting a n  appropriate model. 

mos t  obvious one is to  consider only models with response curves lying 
within the response specification tolerance. This is not a rigid requi re -  

ment. It is possible, at l ea s t  in some examples,  t o  use a mcdel that 

is partially outside the response tolerance envelope and sti l l  produce 

a design meeting the specifications. 

with the mathematical  and physical motivations for the Model PI 

(Chapter 3) and can not be recommended as a general  r u l e .  

The designer would l ike a guarantee that the model 

Unfortunately there  is, as 

However some general  guidelines can be deduced f rom the nature 

The 

But such a model is inconsistent 

The next guideline is to  se lec t  a model,  f rom among those meet-  

ing the f i r s t  guideline, taat  is mos t  likely to be matched by one of the 

possible closed-loop system designs.  

The m o r e  likely it is that some closed-loop sys tem design will match 

the model chosen, the m o r e  likely it is that the specifications w i l l  be 

met .  

generally be very  t ime consuming and might be tantamount to  designing 

the sys tem itself. On the other hand, using the lowest ordermodel  that 

f i ts  within the tolerance envelope when designing a much higher order  

sys tem gives very  l i t t le assurance  that a sat isfactory design would 

The motivation for this is obvious. 

Finding a model that could be matched exactly by the sys tem would 
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resu l t ,  unless its response is completely dominated by a low order  mode. 

A practical  choice for a model would generally l ie  somewhere bet 

these two extremes. 

Several  other guidelines f o r  selectin 

Chapter 3 specifically for  the Model PI. 

table 3-5  together with the appropriate form of the Model P I  to  use in 

various si tuations. .  Table 3-5 is a convenient reference for applying 

the Model PI. 

tion form indicated in table 3 - 4  to  be  used in the Model PI. 

These were  summarized in 

The model must  be put into the geometrical  representa-  

The second step in the design procedure,  that of selecting a 

Compensation configuration, depends heavily on the des igne r ' s  experi-  

ence in control system synthesis.  The basis  for selecting a compensa- 

tion configuration is the same he re  a s  it is in conventional l inear  s e rvo  

des ign techniques ( 9 ) ,  and experience with these is directly applicable. 

But in parameter  optimization techniques only the fo rm of the compensa- 

tion is selected by the designer ,  and the values of the f r e e  design para-  

m e t e r s ,  i. e. the loop gain and compensation t ime constants, a r e  se lec t -  

ed by the optimization process .  

s implest  form of compensation that might give a n  acceptable design and 

only add to it if the s impler  form is inadequate. 

reader  has sufficient famil iar i ty  with conventional techniques to select  

a compensation configuration, and s o  this s tep w i l l  not be  discussed 

further.  

One would generally s t a r t  with the 

It is assumed that the 

Once the compensation configuration is selected,  the next step 

is to  form the closed-loop t ransfer  function in t e r m s  of the f r e e  design 

parameters .  That is ,  determine the numerator and denominator co- 

efficients of the closed-loop t ransfer  function as algeb r a i c  functions of 

the f r e e  design parameters .  The problem is then ready for the general  

computer program for control system design using the Model PI, which 

is step 4. 

A description and complete listing of the computer program 

r this thesis effort  a r e  presented in Appendix B. To use 

single input/output control system design 

ing the appropriate input data cards  and 
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writing one simple subroutine, COEF, that mere ly  lists the functional 

relationships of the f r e e  parameters  to the sys t em t ransfer  function 

coefficients. The model '  s charac te r i s t ics ,  s eve ra l  constants needed 

in the numerical  optimization process ,  and a n  initial choice for  the free 

parameters  enter  the program by input data cards .  

format  and program output are descr ibed in sections B. I .  1 and B. 1. 2 

of Appendix B respectively.  

g r a m  wi l l  be demonstrated in the examples t o  follow subsequently. 

The input data 

The detailed procedure for  using the pro-  

Two general  r e m a r k s  should be made about the initial choice for 

First of the f r e e  parameters  in relationship to  this computer program. 

a l l ,  the optimization algorithm is for finding a local  minimum only s o  

that if severa l  relative minima exis t  in a given problem the initial choice 

of the f r e e  pa rame te r s  determines which of these minima the algorithm 

w i l l  seek. Secondly the procedure for evaluating the Model PI and its 

gradient involves numerically integrating two l inear  mat r ix  equations 

to  their  steady s ta te  values ( see  Chapter 4). The initial choice of the 

parameters  must  be such that a suitable approximation to  these steady 

s ta te  values can be  computed within a reasonably shor t  computational 

time. 

initial p a r  a m  e t e r  values be asymptotically stable. 

This requi res  that the closed-loop system corresponding t o  the 

The l a s t  s tep in the Model P I  design procedure is to determine 

if the closed-loop system design resulting f rom the optimization process  

meets  the engineering specifications. 

in the tolerance envelope the design problem is complete. 

it is immater ia l  whether the sys tem response closely matches the model 

response or not as long a s  it satisfied the engineering specifications. If 

they a r e  not satisfied,  then the design process  is repeated with some 

al terat ion that is likely to  r e su l t  in a bet ter  design. 

would generally be in the fo rm of a different compensation configuration. 

When using the general  Model P I  ( 3 - 8 2 )  for  sys tems with ze ros ,  there  

is a scalar constant, r ,  that determines the relative weighting between 

the quadratic penalty on the vector e r r o r  in pseudo IC ' s  and the quad- 

r a t i c  functional. In that case it may be necessary  to  repeat  the design 

process  for  a n  al ternate  value of r (with the same compensation 

If the sys tem response lies with- 

At this point 

The al terat ion 
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configuration) to  obtain an  acceptable design. 

design problems other a l terat ions a r e  possible but those will be d is -  

cussed in Chapter 6 where an  application of the Model P I  method to  

multivariable system design is considered. 

In multivariable system 

The following examples a r e  presented to i l lustrate  the basic  

Model P I  design procedure and the use of the aforementioned general  

digital computer program- 

5. 1. 1 Design Example for  Step Response Specifications 

Consider the open-loop system shown in a functional block 

diagram in figure 5-1. 

Plant  
C ont r 01 

Power Element 

= 1.0 ’PE 

7 P E  = 0.5 sec.  

sp = 1.0 

‘P = 1.0 sec.  

A. ‘Din*ir -  e”-‘ 5 - 1  Functional Block Diagram of Open-Loop System 

The control power element has a l ready been selected and is not f r e e  to 

be a l te red  in the design process.  The closed-loop system is to  be a po- 

sitional s e rvo  that has a step response lying within the design specifica- 

tion envelope shown in figure 5-2. 

The f i r s t  step in the Model P I  design procedure is  to select  a 

model to represent  the design specifications. According to table 3-5 

the bes t  choice for this example would be a third order  model with no 

ze ros  since the system is third order  with no zeros .  It actually isn’ t 
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Figure  5 - 3  Step Response of a Second Order Model 
T o  Represent  the Design Specification 
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model that w l ie  within the 

third order  

model w i l l  be used here  to  illust 

In this exam 

order  model would no 

by 

l ies  a lmost  in the center of the s tep  response specification envelope, 

as shown in figure 5 - 3 ,  and thus appears  to  be  a good choice. 

reasonable to  expect that if the closed-loop system degign is to meet  

the specifications its step responses would have to be fa i r ly  close to 

that of this model. 

form of the Model PI to  use is 

It is 

Table 3-5  indicates that for this type of model the 

z 

The model 's  extended coefficient vector ,  - zi., which defines Q, for the 

model (5-  1) is 

- &' = [ I  rJz 1 01 (5-3) 

It isn' t necessary to  compute the model ' s  pseudo IC vector in this case,  

a s  indicated in table 3-5. 

type of feedback (compensation) that might provide 

a n  acceptable design is a position feedback. A mathematical  block dia-  

gram of a position feedback configuration is shown in figure 5-4, where 

the f ree  design parameter ,  ko ,  is  the sys tem loop gain. The closed- 

s tem is 

(5 -4) Y ( S )  2 k 0  - -  a 
4 5) s3 t 3 s '  t 2 s  t 2k0 
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Position Feedback 

k o  is a free design parameter  

F igure  5-4 Block Diagram of Closed-Loop System with 
Posit ion Feedback 

The problem is now ready for  the computer program, which w i l l  

find the value of k that minimizes the Model PI. 0 
example the proper subroutine COEF corresponding to  (5-4) is writ ten 

in FORTRAN-IV as 

F o r  this design 

SUBROUTINE COEF(ACOF, BCOF, PAR) 
DIMENSION ACOF( l ) ,  BCOF( l ) ,  PAR( 1) 

BCOF(1) = PAR(1) 

ACOF(1) = PAR(1) 
ACOF(2) = 2. 0 
ACOF(3) = 3. 0 

RETURN 
END 

where PAR( 1) is 2k0, BCOF( 1) is the numerator coefficient of (5-4) and 

ACOF(l) ,  I =  1, 2 ,  3 ,  are  the denominator coefficients of (5-4). The 

input data ca rds  are  as follows ( s e e  section B. 1. 1 for the format  and 

definition of te rms) :  
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First Card (Constants used in numerical  optimization algorithm) 

N, M, K, STEP,  ITMAX, H, IMAX, SNE,  YNE,  RXO, RPC, LI 
3 ,  0 ,  1, 1.0, 50, 0. 1, 200, 0. 0 ,  0. 001, -0: 0, -0. 0 ,  3 

Second Card (Initial choice for  ko) 

P A R (  1) 

0. 1 

The next two ca rds  a r e  blank since no quadratic penalty on the pseudo IC 

vector e r r o r  is used. 

Fifth Card (Model' s extended coefficient vector) 

ALPHA(I), I = 1, 3 

1. 0 1.414 1. 0 

Using these input data ca rds  and COEF in the computer program gave 

the solution k 

function 

= 0. 68, which corresponds to  a closed-loop t ransfer  0 

Y ( S )  - 1 

( 0.S75) '1 2(0 4 uO - (It&')[ 1t.S (0.75) t - (5 -5) 

The s tep response for  this solution is compared to  the specification 

envelope in figure 5-5, which shows that it does not mee t  the specifica- 

tions. 

Posit ion feedback alone is not sufficient. 

The response is somewhat slow and has  too l i t t le damping. 

Adding a velocity feedback is the logical next s tep for  improving 

the sys tem response.  Velocity and position feedbacks, a s  shown in 

figure 5-6,  would allow independent adjustment of the r i s e  t ime and 

damping. 

same model but with this new feedback configuration. 

The Model PI design procedure w i l l  b e  repeated using the 

The closed-loop t ransfer  function for  the position and velocity 

feedback sys tem is 
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Figure 5 - 5  Comparison of the Model PI Design Step Besponses to That 
of the Model and Specification Envelope for Position Feedback 

ko and 7 are free design parameters 

Figure 5 - 6  Block Diagram of Closed-Loop System with 
Position and Velocity Feedback 
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The only changes required to  use the comp 
a r e  in the subro 

routine COEF l is ted above change ACOF(2) to 

ACOF(2) = PAR(2) 

where PAR(2) is 2( 1 t k 7). 
= 2.0 t PAR( l )*PAR(2)  jus t  a s  well. On the f i r s t  data card  change K, 
the number of f r e e  pa rame te r s ,  f rom 1 to  2 and on the second card  add 

an  initial choice for the second f r ee  parameter ,  PAR(2). 

The resulting computer solution 

One could use PAR(2) to  be 7 
0 

* 
gave PAR( 1) 1 2.99 and PAR(2) 

= 5. 21 which corresponds to k = 1. 5 and T = 1. 07. The closed-loop 

t ransfer  function for this solution is 
0 

Figure  5-7 shows that the s tep response for this Model P I d e s i g n  of the 

position and velocity feedback s y s i c i i i  dazs ,-ect tEc d c c i g r ~  spec i f i ca t inns .  

The design problem is complete. 

There is sometimes a tendency a t  this point in the design process  

to  judge the design obtained relative to the model even though it satisfied 

the specifications. F o r  example, in analyzing figure 5-7 one could a rgue  

that some other design might match the step response of the model be t te r  

than the Model P I  solution shown. 

5-7 only compares the position t ime response,  

example attempts to  match the response t ra jec tor ies  in a three dimension- 

al space,  i. e. it t r i e s  to  match position, velocity and acceleration. 

That may ind be t rue since figure 

the Model PI in this 

* 
This example w a s  used in Chapter 4 to  compare the optimization 
algorithm used to  the gradient method. 
three s tar t ing points t 

The optimization paths f rom 
a r e  shown in figure 4-3b. 
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Figure  5-7  Comparison of the Model P I  Design Step Response t o  tha t  
of the Model and Specification Envelope for Posi t ion and 
Velocity Feedback 

When comparing all th ree  of these for  the model and the Model PI 
design in figure 5-8 one can see that the Model P I  produces a r e a s o n a -  

ble  compromise in matching position, velocity and accelerat ion.  

ing the mode l ' s  position t ime response closer  would produce l a rge r  e r -  

r o r s  in velocity and acceleration. 

Match-  
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Figure  5-8 Step Response Comparison of Position, Velocity 
and Acceleration for the Model and Model PI Design 

5. 1. 2 An Example for  Frequency Response Specifications 

When the specifications a r e  given in the frequency domain,  the 

Model PI design procedure is the same a s  that illustrated in the p r e -  

vious section except for the method of establishing a model and c o m -  

paring the resulting design to the specifications. 

selected it doesn’ t mat ter  in the optimization process  whether it w a s  

based on t ime or frequency domain specifications. However the r e -  

sulting design has to  be compared to and sat isfy the specifications in 

the form given. These differences a r e  relatively minor and c a n  be 

illustrated by considering the same design problem as sec t ion  5. 1. 1 

but with frequency domain specifications. 

Once a model  is 

. 
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A feedback control is t o  b e  designed for  the sys tem shown in 

figure 5-1 to  fo rm a positional s e r v o  that has a frequency response 

within the envelope specified in f igure  5-9. 
response envelope is a sufficient specification unless the system is non- 

minimum phase. 

* 
The amplitude frequency 

It is eas i e r  in general  t o  establish higher order  models 

DB 

5 

0 

- 5  

-10 
Frequency Response 

-15 

-20 

-25 
0. 1 0. 2 0.4 0.6 0 . 8 1 . 0  2 .  0 4. 

FREQUENCY - RAD/SEC 

Figure  5-9 Frequency Response Design Specif icat ion.  

0 

* 
This design specification envelope was chosen specif ical ly  for this 
example s o  that the model used in section 5. 1. 1 would also be a 
logical choice here ,  which allows the des i red  points t o  be  i l l u s t r a t e d  
with the minimum of redundant discussion. 

1 3 1  



f o r  this type of specifications than for  s tep response  specifications 

because the asymptotes to  the frequency response  can be used as a 

guide (Bodes ' s  Theorem). 

m o r e  difficult as the mode l ' s  o rde r  is increased. The breakpoints of 

the asymptotes and the damping r a t io  of oscillatory modes completely 

define the model' s t ransfer  function, excluding non-minimum phase 

models ,  which is direct ly  t ransformable into the extended coefficient 

vector and pseudo IC vector needed in the Model PI. 

frequency response curves fo r  f i r s t  and second order  systems are  

readily available, e. g. re fe rences  ( 9 ) ,  (14), (15), and (44), it is w i s e  

t o  consider one of these forms  first  as a possible model. unless it is 

obviously unappropriate. The frequency responses of a first and second 

order  system a r e  plotted in figure 5-10 together with the design s p e c i f i -  

cation envelope fo r  this example. 

Even so, the task becomes increasingly 

Since normalized 

The f i r s t  order  system does not a p p e a r  

FREQUENCY - RAD/SEC 

Figure  5-10 Comparison of the Frequency Responses  of 
F i r s t  and Second Order Models t o  Spec i f ica t ion .  
E nv e l  ope 

132 



to  be  a good choice for the model. 

control system closely matched this f i r s t  order response over the 

frequency range shown, the design specifications would not be sa t i s -  

fied. 

reasonable model over the frequency range considered. 

i s n ' t  necessary  to go to  a third order  model in this case. 

If the response of the closed-loop 

The second order  system represented in figure 5-10 would be a 

Therefore it 

The second 

order  system in figure 5-10 is the same  model (5-1) used in section 

5. 1. 1 Using the same  model here  means that the mechanics of the 

Model P I  design procedure a r e  identical to  the previous example up to 

the point of comparing the result ing designs to  the specifications. 

Consider the case  in which only position feedback is used. The 

Model P I  solution resul ted in the closed-loop t ransfer  function (5-5). 

The corresponding frequency response is compared to-the frequency 

domain specifications in figure 5-11. The peaking-up of the response 

5 r  Specification Envelope 

DB 

0. 1 0. 2 0.4 0.6 0 . 8 1 . 0  2. 0 4.0 

FREQUENCY - RAD/SEC 

Figure  5-11 Comparison of the Model PI Design Frequency 
Response to  That of the Model and Specification 
Envelope for Posit ion Feedback 
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above the envelope indicates that the sys tem is too lightly damped and 

thus position feedback alone is inadequate. 

is again the appropriate action for improving the response.  

quency response of the Model P I  design for  position and velocity feed- 

back (5-7) is compared t o  the specification envelope in figure 5-12. It 

satisfied the specifications s o  the design problem is complete. 

Adding a velocity feedback 

The f r e -  

DB 

5 

0 

-5 
Closed-Loop System 
k o =  1.5 T =  1.07 sec,  

-10 

-15 

-20 

-25 
0. 1 0. 2 0. 4 0. 6 0. 8 1. 0 2. 0 4. 

FREQUENCY - RAD/SEC 

0 

Figure 5-12 Comparison of the Model P I  Design Frequency 
Response to  That of the Model and Specification 
Envelope for Position and Velocity Feedback 

It is interesting to  note that the Model P I  solution has a f r e -  

quency response that matches the mode l ' s  frequency response very 

well in figure 5-12. 

factory,  the Model P I  solution tends to balance matching the model ' s  

frequency response in the low and high frequency ranges.  

cal observation w i l l  be discussed in section 5. 2 in comparing the 

Even in f igure  5-11, where the design is unsatis-  

TLis i r i i p c ~ i  
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Model PI and model-referenced ISE design methods. 

5. 2 Comparison to  the Model-Referenced ISE Method 

The basic  concept of the model-referenced ISE method for 

designing l inear  control systems is i l lustrated by the functional block 

diagram in figure 5-13. 

measure  of the e r r o r  between the time response of a l inear  model, 

representing the des i red  closed-loop response,  and the actual closed- 

loop system time response.  

the model and the two result ing outputs a r e  compared to  form an  e r r o r  

signal. 

e r r o r  over the t ime interval 0 to co. 

to  the f r e e  design parameters  tends to make the s y s t e m ' s  time response 

match that of the model. 

In this approach the performance index is a 

The input to the sys tem is a l so  fed into 

The performance index is taken to  be the integral  of the squared 

Minimizing this ISE with respect  

This process  can be implemented directly for each specific de-  

sign problem on an  analog or hybrid computer, e. g. s ee  references 

4, 22,  23 and 24. The parameter  adjustment procedure fo r  minimizing 

the ISE is usually mechanized a s  some form of s teepest  descent. Each 

time a tes t  input signal, such a s  a unit step,  is applied the local g r a -  

dient of the ISE with respec t  to  the f r e e  parameters  is computed. 

parameters  a r e  adjusted during the transient in the direction that would 

decrease  the ISE. This process  is repeated until the value of the ISE 

is judged by the designer to be sufficiently close to a minimum point, 

o r ,  equivalently, the gradient of the ISE is sufficiently close to zero.  

The distance traveled towards a minimum point during each t ransient ,  

i. e. the s tep s ize ,  is usually adjusted manually by the designer to give 

good convergence and prevent a possible unstable parameter  adjustment 

loop. High speed, repeti t ive operation computers a r e  ideally suited for 

this procedure. 

out on the computer,  minimizing the ISE for the particular compensa- 

tion configuration chosen can be done ra ther  quickly. 

The 

1 

Once the design problem is mechanized and checked 

There a r e  severa l  ways to implement the concept represented 

in figure 5-13 on a digital computer. 

t e r  program equivalent to the above analog procedure with some logic 

One way is to  use a digital compu- 
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added for  s tep s i ze  control and the stopping condition. 

t o  follow the approach descr ibed in Newton, Gould and Ka i se r  (15) to  

first obtain a n  algebraic  function for  evaluating the ISE in terms of the 

f r e e  parameters ,  then use a numerical  optimization algorithm (21) t o  

find a minimum point of the algebraic  function with respec t  to  the p a r a -  

me te r s .  This second method is probably the one m o s t  often associated 

with control system design by parameter  optimization. 

digital computer methods and the analog or  hybrid computer method 

requi re  reprogramming for each new design problem. However, by 

formulating the model-referenced ISE design method in s ta te-space fo rm 

and by appropriately redefining cer ta in  t e r m s ,  it is possible to  use the 

general  digital computer program descr ibed in Appendix B for  numerous 

design problems. It only requi res  changing two simplk subroutines and 

the input data ca rds  t o  change f rom one design problem to  another when 

using the model-referenced ISE performance index. 

simplifying the implementation, this provides a common basis for com- 

paring the Model P I  and model-referenced ISE design methods. 

A second way is 

Both of these 

In addition t o  

The s ta te-space formulation of the model-referenced ISE con- 

cept is presented in the following section and related to  the general  

computer program. Then, in section 5. 2. 2, a control sys tem example 

is designed by both the Model PI and model-referenced ISE methods 

using the computer program l is ted in Appendix B. 

compared and discussed along with some general  subjective comments 

on the two design methods in section 5. 2. 3. 

The resu l t s  a r e  

5. 2. 1 State-Space Formulation of the Model-Referenced ISE Method 

The closed-loop control sys tem and the model can be  represent -  

ed as autonomous sys tems in s ta te-space notation ( see  section 3. 1) as 

h ' x  (t) -s-s 
f y s s 

(5-8a) 

(5-8b) 

x ( 0 )  = x 
-s 0 -S 

( 5 - 8 ~ )  
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and 

k ( t )  = F x (t) -m m-m 

ys s 
ym(t) = F x (t) +. m-m 

x (0 )  = x 
-mO -m 

(5-9a) 

(5-9b) 

(5-9c) 

respectively,  where the subscr ipts  s and m denote the closed-loop 

system and model respectively,  the sca l a r s  ys(t)  and ym(t) a r e  the 

output var iables ,  y is the steady-state value of both y ( t)  and y ( t ) ,  ss S m 
and the vectors  h and h are defined as 

-S -m 

h' = [ l  I -  : 0 ' 1  
-S (5- 10) 

= [ l  : 0 ' 1  
I -  

h' -m 

with the null vectors  appropriately dimensioned. The coefficient 

ma t r i ces ,  F and F,, a r e  in the phase var iable  form (3-11) and the 

pseudo IC vec tors ,  x and x are  of the fo rm (3-14). The closed- 

loop sys tem is nth order  and the model is Bth order .  

S 

-s 0 -mO 

Define a partitioned, ( n  t 1) X 1 state  vector ,  - x( t ) ,  as 

(5-  11) 

Equations (5-8a) and (5-9a) can b e  combined and wri t ten in t e r m s  of 

x(t)  as 

- k(t) = Fx(t) (5-12) 

where F is a n  ( n  t 1) X ( n  t 4) partitioned matrix 
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(5-13) 

and the 0 ' s  are appropriately dimensioned null matr ices .  

IC vector for  (5-12) is 

The pseudo 

(5-14) 

The e r r o r ,  e ( t ) ,  between the model and closed-loop sys tem output 

var iables ,  i. e. 

e(t )  = ymh)  - V J t )  
(5- i 5 j  

can be writ ten in t e r m s  of - x(t) as 

e( t )  = h'x(t) (5- 16) 

where 

The model-referenced ISE performance index is defined as 

I = yom[ e ( t ) I 2  d t  ( 5 -  18) 

Using (5-16) in the above definition gives 
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(5- 19) 

7 

. - -  

I 
- - -  

- 

Then defining a n  ( n  t 1) X ( n  t 1) matr ix  Q as 

Q = h h '  (5-20) -- 
the model-referenced ISE performance index can be writ ten as 

(5-21) 

The optimization portion of the model-referenced ISE design 

method can be interpreted a s  minimizing (5-21) with respec t  to the 

f r e e  design parameters  with x( t )  constrained to satisfy (5-12) for  the 

pseudo IC (5-14). 

Chapter 4 in the derivation of the numerical  optimization algorithm 

used in the general  computer program of Appendix B. 

is the same a s  the quadrat ic  function (4-2) and can be evaluated f rom 

equations (4-3)  and (4-4) or (4-8).  The derivation in section 4. 2 of 

the necessary condition for a local minimum applies here  up to the 

This is essentially the same fo rm that w a s  used in 

Equation (5-21) 

point where the variation 6 F  is expressed in t e rms  of the variation in 

the parameter  vector ,  6 ~ ( 4 - 2 5 ) .  The s t ruc ture  of F in this case is 

F (5 -22)  

where - cy is the model 's  coefficient vector and - a is the closed-loop 

s y s t e m ' s  coefficient vector which is a function of the f r e e  parameters ,  

i. e. 2 = - a(p). Then the variation in F due to  a variation in E is 
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bF = -E 6e'Al -nt1 (5-23) 

where 2nt1 is a n  ( n  t 1) X 1 vector defined as 

E' = [ o  -nt1 0 0 0 ...- 

and A is defined in this case  a s  

11  (5-24) 

(5-25) 

where 0 is an  appropriately dimensioned null matrix.  

place of (4-25),  the necessary  condition for a local minimum is the 

same a s  (4-29) except thatzntl  mus t  replace E Since the 

d i rec t  gradient evaluation method of section 4. 3 was obtained directly 

f rom the necessary  condition derivation, the i terative scheme given by 

(4-44),  with E -ntl  -n 
can be used he re  also. 

Using (5-23) in 

in ( 4 - 2 9 ~ ) .  -n 

replacing E and other quantities defined a s  above, 

The important point of this development is that the bas ic  form 

of the numerical  optimization procedure is the same fo r  both the Model 

PI and the model-referenced ISE and fur thermore this form is indepen- 

dent of the specific design problem. 

be writ ten for the general  form and check-out once. 

be used fo r  many design problems. 

design problem a r e  quite easi ly  entered into the general  program. 

details for applying the program with the model-referenced ISE per -  

formance index a r e  presented in section B. 3 of Appendix B. 

A digital computer program can 

After that, it  can 

The data required for a specific 

The 

5. 2. 2 Comparison of a Design Example 

The example considered is the design of a positional s e rvo  

s imi la r  t o  that in section 5. 1. 1 but with a higher order  description of 

the plant. 

in figure 5-14. 

nary axis  and complex poles with very  low damping. 

mode has a significant res idue and cannot be neglected. 

A functional block diagram of the open-loop sys tem is shown 

The plant contains complex ze ros  located on the imagi- 

This oscil latory 

The design 
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Plant  Contr 01 
Power Element 

= 1. 0 sp = 1.0 'PE 

7 w = 3 . 0  rad. /sec.  P E  = 0. 5 sec. 
Z 

7 = 1.0 sec. P 

5 = 0.01 

o = 5.0 rad , / sec .  

F igure  5-14 Functional Block Diagram of Open-Loop System 

specifications a r e  assumed to be the same as for the example in section 

5. 1. 1, that is ,  thz! step response of the positional s e rvo  must  l i e  within 

the envelope shown in figure 5-2. 

F o r  comparative purposes,  it is desirable  to  use the same model 

in both the Model PI and the model-referenced ISE design procedures.  

According to table 3-5 f o r  systems with ze ros ,  it would be preferable 

to use a model with the same s t ruc ture  a s  the closed-loop sys tem,  i. e. 

in this case  a fifth order  model with two zeros .  But the computational 

e f for t  in the model-referenced ISE procedure increases  as the order  of 

the model increases  

to  that design method (the order  of the model does not affect the 

4 
so that a lower order  model would be advantageous 

4 
The justification for  this statement and its importance a r e  discussed 
subsequently in section 5. 2. 2. 3. 
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computational effort  in the Model P I  method). 

to b e  a reasonable compromise on which to  base  a comparison of the two 

methods. With the a id  of the non-dimensionalized graphs of step re- 

sponses for  third order  sys tems in re ference  49, the following model 

w a s  easi ly  established to  represent  the design specifications: 

A third order  model s e e m s  

- 1 2 . 2 2  ( 5 - 2 6 )  
3 

- 
s t (5 .  9)s‘ t (17 .  12)s t (12. 22)  

The s tep response fo r  the model ( 5 - 2 6 ) ,  as shown in figure 5 - 1 5 ,  does 

l ie  within the specification envelope. 

1. 2 r  

POSITION 

OUTPUT 

1. 0 

0.  8 t  /,’ /. 

0 1 2 3 4 5 6 7 8 

TIME -SEC 

Figure  5 - 1 5  Step Response of a Third Order Model Compared to 
Specification Envelope 
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By comparing the open-loop sys tem considered here ,  f igure 

5-14, t o  that in section 5.1'. 1, f igure 5-1, one can see that the previous 

example is a n  approximate design for  this example based on the dominant 

lower order  effects .  

velocity feedback to  obtain a n  acceptable design in the previous example, 

the same feedback configuration w i l l  be assumed he re ,  i. e . ,  that shown 

in figure 5-16. 

configuration in t e r m s  of the f r e e  parameters ,  ko a n d r ,  is 

Since it w a s  necessary  to  use both position and 

The closed-loop t ransfer  function for this feedback 

kg 9 50 ( s2  t 9) 
(5-27) 

where 

50 3 
D(s) = s5 t (3. l)s4 t (27. 3 t - k 7)s  

9 0  
'\ I 

t (75.2 t 50k ) s2  t (50 t 50k0r)s 
9 0  

5. 2. 2. 1 Model PI Design 

Table 3-5 indicates that for  this system-model combination the 

s impler  forms  of the Model P I ,  

can be  used. The - 8 defining fo r  the model (5-26) is 

[ 12.22 17. 12 5.9 1 0 0 1  a1 = - 

(5-29) 

(5-30) 

The subroutine COEF for  this design problem is 
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SUBROUTINE COEF(ACOF, BCOF, PAR) 
DIMENSION ACOF( l ) ,  BCOF( l ) ,  PAR( 1) 

BCOF( 1) = 9. O*PAR( 1) 
BCOF(2) = 0. 0 
BCOF(3) = PAR(1) 

ACOF(1) = BCOF(1) 
ACOF(2) = 9. O*PAR(2) t 50. 0 
ACOF(3) = PAR(1) t 75. 2 

ACOF(4) = PAR(2) t 27.3 
ACOF(5) = 3. 1 

RETURN 
END 

where PAR( 1) is (50/9)k0 and PAR(2) is (50/9)k07. 

set-up follows that i l lustrated in section 5. 1. 1. 

The input data ca rd  

Starting f rom an  initial choice of ko = 1. 0 and 7 = 1. 45, the 

computer solution for the Model P I  design procedure w a s  ko = 1. 59  and 

-r = 1. 30, which gives a closed-loop system t ransfer  function of 

(5-31) 

The s tep response for  this solution is compared to  the design specifica- 

tion envelope in figure 5’-17, which shows it t o  b e  a n  acceptable design. 

In this example, the specifications are  assumed to  be given completely 

by the step response envelope s o  that the lightly damped, higher f re -  

quency mode oscillation apparent in figure 5-17 should not be considered 

objectionable. If such a n  oscillation were  unacceptable the design speci-  

fication would have included a n  additional requirement  such as a mini-  

mum damping r a t i o  fo r  all oscil latory modes. 

of the higher frequency mode would requi re  additional compensation, 

but since that is not a requirement  for  this example,  it will not be pur-  

To increase the damping 

sued fur ther .  

146 



1. 2r 

POSITION 

OUTPUT 

y( t) 

1. 0 
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0.4 

0. 2 

0 

ko = 1.59 7 = 1.30 sec. 

S p e c if ica t i on Enve 1 op e 

0 1 2 3 4 5 6 7 8 

TIME - SEC. 

F igure  5-17 Comparison of the Model PI Design Step Response 
t o  the Specification Envelope 

5. 2. 2. 2 Model-Referenced ISE Design 

When using the general  computer program with the model- 

referenced ISE performance index it is necessary  to use subroutine 

CALSYS MOD 3 ,  in place of CALSYS MOD 1 ( s e e  section B. 3 of 

Appendix B). All of the required modifications to the optimization 

algorithm indicated in section 5. 2. 1 a r e  performed in CALSYS MOD 3. 

In this procedure the model’s  charac te r i s t ics  enter  the program through 

a subroutine COEFM used in CALSYS MOD 3. The subroutine COEFM 

for  the model (5-26) is 
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SUBROUTINE COEFM (ALPHA, BETA, NM, MM) 
DIMENSION ALPHA( l ) ,  BETA( 1) 

NM = 3 
MM = 0 

BETA(1) = 12.22 

ALPHA( 1) = 12. 22 
ALPHA(2) = 17. 12  
ALPHA(3) = 5. 9 
RETURN 
E N D  

where NM and MM a r e  the number of model poles and ze ros  respectively,  

BETA( 1) is the numerator coefficient of (5-26) and ALPHA(I), I =  1, 2 , 3  

a r e  the denominator coefficients of (5-25). The fv.nctiona1 relationships 

of the closed-loop sys tem t ransfer  function coefficients t o  the f r e e  

parameters ,  i. e. the coefficients of (5-27) and (5-28) enter  the program 

through the same  subroutine COEF used in the Model P I  design, section 

5. 2. 2. 1. 

The input data ca rd  set-up follows the format  descr ibed in 

section B. 3. 1. Note that the integer N required on the first data ca rd  

is the order of the sys tem plus the order  of the mode, i. e. N =  n t P = 
5 t 3 = 8. 

to  find the minimum of a general  quadratic functional of the form given 

by equation (4-2) or  (5-21),  repeated he re  

This is necessary because the main program is writ ten 

(5-21) 

in which the dimension of the s ta te  vector,  x(t), is N. In the Model PI 

procedure N w a s  the order  of the closed-loop sys tem,  n, but in the 

model-referenced ISE procedure the vector ,  - x( t ) ,  defined by (5-1 l ) ,  

is of dimension ( n  t 1). 

Starting f rom a n  initial choice of k = 2. 2 a n d 7  = 1. 0, the com- 0 
puter solution for the model - referenced ISE performance index w a s  

ko = 4. 19 and 7 = 1. 20, which gives a closed-loop sys tem t ransfer  

function of 
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Y ( S )  
- =  

( 5 - 3 2 )  

Figure  5-18, in which the s t e p  response for  this solution is compared 

to  the design specifications, shows that it is an  acceptable design. 

comments made in section 5. 2. 2. 1 about the lightly damped, higher 

frequency mode apply here  also.  

The 

P OS IT ION 

OUTPUT 

1. 2 

1. 0 

0. 8 

0. 6 

0.4 

0. 2 

0 

Closed-Loop System 
= 4. 19 T = 1. 20 sec. 

Spec if icat ion Envelope 

0 1 2 3 4 5 6 7 8 

TIME - SEC. 

F igure  5-18 Comparison of the Model-Referenced ISE Design 
Step Response to  the Specification Envelope 
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5. 2. 3 Comparison of Results and Discussion 

Both procedures resul ted in a pos a1 se rvo  design s 

the specificat 

the customer '  

using a parameter  optimization method in general  to  synthesize a control 

system to  meet  engineering specifications, the design process  is not 

complete until the specifications a r e  me t  even if severa l  design i terations 

a r e  necessary.  

tive efficiency of successfully applying the techniques. In this specific 

example, that bas i s  reduces essentially to the relat ive efficiency of the 

digital computation task for each method. 

drawn from this comparison that a r e  indicative of the two procedures 

in general. 

Ultimately the bas i s  for comparison has to  be the r e l a -  

Definite conclusions can be  

Up to the point of preparing the subroutines COEF and COEFM 

and the input data cards  the two procedures a r e  the same.  

in effort to prepare  these is negligible. 

ference in the computational effort  required to  obtain the two designs. 

This effort  can not be measured fair ly  in t e rms  of the total elapsed 

computer t imes f rom the s tar t ing points t o  the final designs because 

those depend too heavily on the start ing points, i. e. the initial choices 

for  the f r e e  parameters .  

effort is the r a t io  of the t imes required to  compute one averaged g r a -  

dient step. 

each of the above design processes  the computer w a s  instructed to  

print out the elapsed t ime for  one averaged gradient step. 

P I  approach the elapsed t ime w a s  about 25 seconds and in the model- 

referenced ISE approach the elapsed t ime was about 110 seconds. 

these numbers as a n  indication of their  relative computational t imes 

means that the model-referenc'ed ISE 

a s  the Model PI method in t e r m s  of computational effort. This is due to  

the fact  that  the Model P I  procedure does not have to  compute any t e r m s  

involving the model' s t ime response whereas the model-referenced ISE 

procedure does. 

The difference 

But there  is a substantial  dif- 

A fair measure  of the relative computation 

During the execution of the digital computer program in 

In the Model 

Using 

thod was about 1/4 as efficient 
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It is possible to  establish a rough est imate  of the relative 

computational effort  for a general  design problem in t e r m s  of the 

o rde r s  of the sys tem and model, n and P respectively. 

t ime consuming portion of the optimization algorithm is the evaluat 

of the performance index and its gradient. 

ous multiplications involved in numerically integrating two N X N matrix 

equations of the form (4-44c) and (4-44d), where N is the dimension of 

the state vector appearing in the quadratic performance index. 

number of multiplications involved in multiplying two N X N mat r i ces ,  

which is done repeatedly in the Runge-Kutta numerical  integration 

scheme,  is N”. 

model-referenced ISE the dimension is N =  n t I s o  that a rough est imate  

of the relat ive computation times is given byT 

By far the most  

This resu l t s  f r o m  the numer-  

The 

2 
F o r  the Model Pi  the dimension is N =  n and for  the 

.I. 

3 n 
(5-33) 3 ( Model-Ref. ISE Compute Time >- ( n  4- Q) 

Model P I  Compute Time 

In the example considered here, equation (5-33) gives 

- 125 - 1 
4 

- - -  - - 53 3 
- n 

(5  t 3)3 512 3 
(n  f 1) 

(5-34) 

which checks with the actual t ime measurements  stated above. 

It should be  pointed out that this relative computation effort is 

essentially independent of the optimization algorithm used once the 

performance index and its gradient a r e  evaluated. 

dient direction algorithm used in the computer program described in 

The averaged g ra -  

>;< 
It is possible to wri te  a m o r e  efficient algorithm for  the model- 
referenced ISE method than the one used he re ,  by substituting (5-13) 
into equations (4-44c) and (4-44d) of Chapter 4 andusing the resulting 
partitioned equations. In that ca se  the s imi la r  rough est imate  of the 
relat ive computation times is given by 

3 n 

[ n 3  t l3  t i (n2a t n12) 1 
the t rend would be the same as discussed he re  but not as severe.  
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Appendix B was not proposed as the most  efficient one. 

techniques could r edu 

More efficient 

manner in which the 

index and its gradient so  that the relative computation effort  would still 

be given approximately by (5-33). 
The importance of the relative computation effort may not be 

fully real ized until considering a n  extensive control system design task,  

such  as designing a flight control system. 

of flight conditions , weight, center of gravity locations , and flight 

configurations (flaps,  landing gea r ,  speed brakes ,  external s to re ,  etc. ) 

the total design problem involves applying the computer program 

numerous t imes to  meet  the specifications under all these conditions. 

Depending on the order  of the closed-loop flight control sys tem and model 

used, the savings in computer time a t  each tes t  condition using the Model 

PI could be anywhere f rom 20% to  85% over that required using the 

model-referenced ISE method. In such a la rge  design problem this 

Because of the wide range 

would represent  a substantial monetary savings. 

Comparing the overall efficiency of successfully applying the 

two methods would in general  involve other fac tors  in addition to the 

computation t imes.  

the difficulty in establishing a n  appropriate model, and the manner in 

which the design procedure tends to  match the model a r e  some of the 

other important factors.  

design problem considered. 

i l lustrated by comparing the manner in which the two designs in this 

example tend to  match the model in both the t ime and frequency domain. 

The order  and s t ruc ture  of the model selected,  

These a r e  strongly dependent on the particular 

However some interesting points can be 

position, velocity and a c  responses  of the 

a s tep input a r e  ose of the model in 

20 for the Model PI design and the model-referenced 

ISE design respectively. By c 

the Model PI design attempts balance among matching all 

hese  f igures  one can see  that 

e s  p ons e s  whereas  ode1 - ref e r e  nced emphasizes 
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matching the position t ime response,  as would be  expected. This 

tendency of the Model PI design is a resu l t  of the Model PI attempting 

to  match  the mode l ' s  response t ra jec tory  in its extended s ta te  space. 

This charac te r i s t ic  of the Model PI can aid the designer in selecting a n  

appropriate  model. Of course the model-referenced ISE method can be 

used in a m o r e  general  fo rm,  including the e r r o r s  in velocity, acce le ra-  

tion and higher derivatives,  to  produce a design that compromises  between 

matching severa l  var iables  as with the Model PI design. 

weighting factors  used in such a general  form a r e  selected to  b e  equiva- 

lent  to those defined by Q in (3 -3b)  used in the Model Pi then the resu l t -  

ing design would be  identical t o  the Model PI design (this w a s  proven in 

Chapter 3). 

In fact ,  if t?te---- 

The frequency responses  of the two designs are compared to that 

The point i l lustrated of the model in figures 5-21 and5-22  respectively. 

in comparing these figures is that the Model PI design tends to  match 

the mode l ' s  frequency response over a wider frequency range then does 

the model-referenced ISE design. 

frequencies more  than the model-referenced ISE design. 

te r i s t ics  a r e  obtained at the expense of a poorer match in the low f r e -  

quency range. 

It a l s o  tends to attenuate the higher 

These charac-  

In comparing these two methods,  one additional point is worth 

mentioning. 

design methods than applying them to  practical  problems. Instructors 

have been known t o  ass ign  design examples as home problems to illus- 

t ra te  a particular design method. 

ISE method have to  be  res t r ic ted  to  a lmost  t r ivial  design situations be -  

cause the analytical solution and hand computation of a somewhat realis - 
t ic problem involves a n  unreasonable amount of tedious work f o r  a home 

problem. This is easily i l lustrated by considering theapproach described 

in Newton, Gould and Kaiser  (15) for  a third order  sys tem with two f r e e  

design parameters  and a second order  model which is about the s implest  

problem that is somewhat real is t ic .  

I,-, of the fo rm shown below would be  required to  evaluate the per for -  

mance index. 

It is m o r e  concerned with the process  of teaching the 

Examples using the model-referenced 

A fifth order  tabulated integral ,  
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p 

1 
m l  = -d d t d l d 2  m = - ( d 2 m 3 - d 4 m 2 )  

do 0 3  

- d a m  + d m )  
'5 = d0(dlm4 3 3 5 2 m = -d d t dld4 2 0 5  

The coefficients c i =  0, 1, 2,  3, 4 and d j = 0, * , 5  a r e  functions 

of the model ' s  numerator and denominator coefficients and the s y s t e m ' s  

numerator and denominator coefficients which a r e ,  in turn,  functions 

of the f r e e  design parameters .  

parameters  is not a reasonable task to do by hand. 

formulated with the Model P I  would involve solving a 3 X 3 matr ix  

algebraic equation (4-14) to form the PI (4-13) then minimizing this P I  

with respec t  to the f r ee  parameters .  This is equivalent to  minimizing 

a third order  tabulated integral ,  i. e. 

i' j' 

To minimize I with r e spec t  to  two f r e e  

This same example 
5 

2 2 c d d t (c f  - 2c0c2) dOd3 t cOd2d3 - 2 0 1  
I3 - (5-36) 

2dod3(-d d + d l d 2 )  
0 3  

referenced ISE would be r e s t r i c t ed  to  no m o r e  than second order  sys tems 

and models. 
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5. 3 Some P a r a m e t e r  Constraint Methods 

It may be  necessary  in some design problems to  l imit  the 

range of specific f r e e  design parameters  or possibly of a function of 

the parameters. 

If sufficient f r e e  pa rame te r s  are allowed in a design problem where the 

The necessity for  this may a r i s e  f r o m  various sources .  

model is of lower order  than the sys tem,  then the optimization solution 

tends to  make one or m o r e  parameters  infinitely l a rge ,  except in cases  

where pole-zero cancellation occurs .  

l imi t  mus t  be  s e t  on the parameters  that tend to  get  very  large.  

constraint  on parameters  may be directly related to  economical hard-  

ware  implementation. F o r  example,  by limiting the allowable ranges 

of the compensation pa rame te r s  the design might be implemented with 

a passive network whereas exceeding these ranges might require  an  active 

compensation network, which would be more  expensive. Or the open- 

loop gain may have to be l a rge r  than some minimum allowable value 

To be of any practical  value, some 

Or the 

required to  satisfy a steady-state disturbance specification. In general  

this would place a constraint  on a function of the f r e e  parameters  since 

the open-loop gain may depend on severa l  parameters .  

There  a r e  severa l  ways that parameter  constraints can be in- 

The methods considered cluded in parameter  optimization problems. 

he re  a r e  divided into two categories:  hard" constraint  methods; and 

soft" constraint  methods. In hard" constraint  methods one se t s  up 

a n  inequality relationship that is a mathematical  representat ion of the 

des  ired parameter  range l imitations.  

becomes a rigid requirement  in the optimization process .  

I' soft" constraint  methods, one augments the original performance index 

with a function of the f r e e  pa rame te r s  that tends to force  the parameters  

Satisfying this inequality then 

In the 

to  l ie  within the allowable range by penalizing l a rge  excursions outside 

the range. 

performance index used, the t reatment  w i l l  be  €or a general  performance 

index, I, which is a non-negative function of the f r e e  parameter  vector,  

2, i.e. 

Since the methods considered do not depend on the particular 

(5-37) 
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This can represent  the Model PI, 

other performance index. 

e m ode1 - r ef erenced r some . 

Assume that the des i red  res t r ic t ions  on the design parameters  

a r e  adequately represented by 

(5-38)  

fo r  example (5 -38)  might correspond to  the s e t  of inequality constraints 

(5 -39)  

where p p 2  and p a r e  f r e e  parameters  and K is the open-loop gain. 1’ 3 OL 
The optimization problem is to find the value of e that minimizes 

Ice) subject to the inequality constraint  (5 -38) .  

t reated extensively in the l i t e ra ture  (20). 

c lass ical  method of Lagrange fo r  constraints is the following: 

This problem has been 

One procedure based on the 

At the cu r ren t  value of E t es t  the inequality (5 -38) .  Compo- 

nents of - f ( p )  satisfying the inequality a r e  neglected. Com- 

ponents of_l(p) violating the inequality a r e  s e t  equal to  z e r o  

and the standard Lagrange method for equality constraints 

(50) is used for  those components of - f (p) .  At the next 

lue of E the process  tea. 

Note that the tes t  must  be  made on all components off(p) at each 

value of E because it is possible for the optimization path to  go along 

a constraint  boundary for  a while then come off it. That is, once a 
is reached, one can not assume that the equalit 
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holds f rom then on. 

in reference 20. 

Other I I  hard" constraint  procedures  are reviewed 

It is difficult t o  allow for  a r b i t r a r y  I' hard" constraints in a 
general  computer program,  such as that in Appendix B,  because they 

involve providing special  logic within the optimization algorithm that 

depends on the specific constraints used in the design problem. "Soft" 

constraint  methods a r e  shown in the next section to  be more  convenient 

in that respect.  

5. 3. 2 I t  Soft" Constraints 

Assume that the des i red  res t r ic t ions  on the design parameters  

are represented by 

for  example (5-40) might correspond to  the se t s  of inequality constraints 

I 

max p1 

p2 

- - - - -  

m ax 

a3 

(5-41) 

which is equivalent to  ( 5 - 3 9 ) .  
inequality of the form(5-38) into the form (5-40) and vice versa .  

object of a 

s ide the des i red  range given by (5-40). 

penalty function, +[&(e)], that has  a relatively small value within the 

des i red  range and a relatively l a rge  value outside the des i red  range, 

then augmenting the original performance index (5-37) with +[g(p)], 

i. e .  

Clearly one can always t ransform an  

The 

soft" constraint  is t o  penalize values o fg (p )  that are  out- 

This is done by defining a sca la r  

(5-42) 

Minimizing (5-42) is s imi la r  t o  minimizing the original performance 
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index as long as g(n) is within the des i red  range since $[g(e)] is 

smal l  there.  

in (5-42) tends to force  (g(2) towards the des i r ed  range when (5-42) 

is minimized. 

If g(2) is outside the range (5-40) then the first term 

There  a r e  many functions that could b e  used as a penalty function. 

The most  common one used is a quadratic function. 

a quadratic penalty may be too 

u s e  a quart ic  penalty or an  exponential penalty. 

relative penalty these impose,  consider a situation in which a parameter ,  

p ,  which is known to  be positive, is to be res t r ic ted  t o  a value less than 

Appropriate quadratic,  quart ic  and exponential penalty functions pmax' 
would be 

In some  problems 

soft" in which case one may  want to  

To i l lustrate  the 

2 
P (5  -43) - 

pmax $ 2  - 

(5  -44) 

(5  -45) 

F igure  5-23shows a comparison of these as a function of the parameter  

value for p = 10. The exponential function is c lear ly  the bes t  if a 

very  sha rp  constraint  is desired.  
max 

General fo rms  for  quadratic,  quart ic  and exponential penalty 

max' functions representing (5-40) for finite &in and g a r e  

(5 -46) 
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(5-47) 
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Figure 5-23 Comparison of Quadratic, Quartic and Exponential 
One-sided I' Soft" Constraints 
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' s  a r e  constants that  

factor for the param 

index. The 

. Figure 5-24 
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Figure 5-24 Comparison of Quadratic, Quartic and Exponential 
Two-sided '' Soft" Constraints 

g is a sca l a r  parameter ,  p, and the 

sing the exponential form can actually des i red  r a n g e  is  205 
provide a s  sharp  of a constraint  boundary as des i red  by choosing a 

sufficiently l a rge  value for c in (5-48). 
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Arbi t ra ry  If soft" constraints can  b e  allowed fo r  in a general  

computer program for  control sys tem design quite easily. 

augmented performance index (5-42) is l inear  with respec t  to  + and 

ICE) its gradient is a l s o  l inear  with r e spec t  to V+ andVI(e).  

+ and V+ can easi ly  be  computed in a subroutine and added t o  I(E) and 

VI(e) in the main program. 

particular design program only involves writing a subroutine for  com- 

puting + a n d  V+. 
and V+ are analytical functions that are easi ly  programmed and com- 

puted. 

Since the 

The t e r m s  

Then to  use  a I1 soft" constraint  in a 

If + is one of the fo rms  (5-46) - (5-48), its value 

The gradients corresponding to  (5-46) - (5-48) a r e  given by 

1 

(5-49) max 

- 
8rpc  gl [ gi  - z(gi 

m in 
(gi 

max 

48 r 
PC 

1 

max m in f [g i -H(g i  (5-50) 

where p. and a+/ap.  are the j th  components of e and V+ respectively. 
J J 
This is the general  approach recommended for including p a r a -  

me te r  constraints in the program l is ted in Appendix B. 

DELPC is provided for  in the main program for this purpose and the 

weighting factor r is named RPC. T o  include I' soft" parameter  

constraints in a particular design problem RPC must  be given some 

nonzero value and the user  must  w r i t e  a n  appropriate subroutine 

DELPC (see section B. 1 of Appendix B). 

The subroutine 

PC 
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CHAPTER 6 

FLIGHT CONTROL SYSTEM APPLICATION 

The Model P I  is applied in this chapter to  the engineering 

design of three flight control sys tem examples.  

portant prelude to  these examples since the emphasis  here  is  on the 

relationship of real is t ic  design requirements  t o  the synthesis process .  

The type of design problems illustrated involve the pilot maneuvering 

loop, a s  r e fe r r ed  to  in  Chapter 2 .  and hence involve a i r c ra f t  handling 

qualities requirements .  

des  igned to provide Satisfactory to  Good longitudinal hand1 ing qualities 

for  the X-15 a i rc raf t .  The second example is the design of a complex 

lateral-directional stability augrnentation system for  the X-  15 a i rc raf t ,  

which i l lustrates the Model P I  design methods for  multivariable systems.  

Finally,  a pitch axis control sys t em is designed for  a VTOL a i rc raf t  

in which the p i lo t ' s  control stick commands the a i r c r a f t ' s  velocity with 

respec t  t o  the ground. The design specifications of this la t ter  example 

includes handling qualities requirements  and velocity s tep response 

requirements .  

Chapter 2 is a n  im- 

F i r s t  a simplified pitch damper  sys tem is 

6. 1 Simplified Pi tch Damper Design for  the X-15 Aircraf t  

An example of a simplified pitch damper  for the X - 1 5  a i r c ra f t  

that w a s  designed by l inear  optimal control in re ferences  27  and 28, 

is redesigned he re  using the Model PI. The objective is to  produce 

Satisfactory longitudinal handling qualities at one flight condition. 

p resent  problem formulation differs f rom that in references 27 and 2 8  

i n  r e spec t  t o  this objective. 

The 

These  previous works w e r e  pr imari ly  
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interested in illustrating the form of the l inear  optimal control 

solution and did not s ta te  any design objective. 

on meeting rea l i s t ic  design c r  

F igure  2 - 2 ,  w 

used as the ha 

longitudinal handling 

assumed to be satisfactory.  

Only the rigid body, shor t  period longitudinal dynamics a t  one 

Small perturbations about the equili- 

Here ,  

flight condition a r e  considered. 

br ium flight path a r e  descr ibed approximately by 

4 = M q  t M a  t M.& t M6 6h 
h q CY CY 

where 

9 is the pitch ra te  

CY 

n is the normal accelerat ion 

'h 

M MQ, Mb, M , La and L a re  constant, dimensional 
q' 6h 6h 

stability and control derivatives.  

is the incremental  angle of attack 

Z 
is the incremental  deflection of the horizontal 
s tabi l izer  

The X-15 pitch axis  control is obtained f rom all movable hor i -  

z e r s  (51). The combine ics of the pitch damper  

represented in 

1 1 Sh - - - + T ; h h  
C 

where 
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is the incremental  command input to  the pitch damper  

is the equivalent time constant 

C s e r v o  'h 

7 

Using the value of T =  0. 15 as assumed in re ference  28, gives a t r ans -  

fer function 

The numerical  values used in re ference  28 fo r  the X-15 at a 

Mach number of 4. 8 and a n  altitude of 77, 000 feet (configuration and 

weight not specified) a re  listed in table 6-1. 

TABLE 6-1 

DIMENSIONAL DERIVATIVES FOR THE X-15 AIRCRAFT 
( F r o m  reference  28) 

Mach Number = 4 .8  

-1  

- 2  

-1  

- 2  

M = -0. 132 s e c  

Ma = -17. 1 sec 

Mb = -0.046 sec 

M = -12.2 s e c  

q 

'1.1 

Altitude = 77, 000 f ee t  

-1  

-1  
= 0.277 sec  L 

L = 0.037 sec  
(Y 

'h 

Using these values resu l t s  in a n  open loop X-15 pitch r a t e  t ransfer  

function of 

-0. 161 ( 1  t &) 
- =  

2(0. 055) 
(4. 13) 'h(') I t  

which corresponds to  a shor t  period mode frequency, w 

rad.  /sec. and a damping ration, 

interpreted on figure 6-1 in t e r m s  of the longitudinal handling qualities 

c r i t e r i a  as being Unacceptable. 

of 4. 13 

, of 0. 055. These  values a r e  
S P '  

5 S  P 

This would clear ly  indicate the need 
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w 
S P  

R AD IANS 
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F i g u r e  6-1 
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f o r  a pitch damper  system. 
The design requirements  for a pitch damper  in this c a s e  a re  

only requirements  on the closed-loop shor t  period mode poles. 

is stated explicitly about the pole due to  the actuator or  the s y s t e m ' s  

z e r o s ,  both of which affect the closed-loop response.  

quirements  on these are  implicit in the handling qualities c r i te r ia .  

Cr i te r ia  such a s  on figure C - 1  a r e  established based on tes ts  in which 

the shor t  period mode is dominant. Any other modes such a s  that due 

to  the actuator must  therefore have smal l  res idues compared to  that of 

the shor t  period mode in order  for  the handling qualities to remain valid. 

How smal l  the actuator mode residue must  be,  is left to the des igne r ' s  

engineering judgement. Chalk (39)  has shown in a study on the effect of 

L 

period mode t ransfer  functions affect the handling qualities. 

clusion was the L 

values a s  determined in the study, for c r i te r ia  such a s  that on figure 

6-1 to  be valid. 

6 - 1  is appropriate.  

Nothing 

The general  re-  

and t rue speed that the ze ros  and static sensit ivit ies of the short  
CY 

One con- 

and t rue speed must  be within the best  range of 
CY 

This example meets  that requirements  s o  that f igure 

The f i r s t  s tep in the Model P I  design procedure is to select  a 

model to represent  the design specifications. 

cations in this problem it is convenient to work in the s-plane.  

c r i t e r i a  of f igure 6-1 a r e  t ransformed into the s-plane on figure 6 - 2 .  

A l s o  the open-loop pitch response and actuator poles and z e r o  a r e  i n -  

dicated for reference.  

rea l i s t ic  design objective for  the closed-loop shor t  period mode poles. 

Requiring 'I Good" handling qualities may place too severe  of a r e -  

quirement  on the damper  sys tem,  but the designer would s t i l l  t ry  t o  

For  the type of specifi-  

The 

The cross-hatched region represents  a 

get as close to  the Good region a s  feasible. 

hatched region is a s  the design objective with the highest damping pre-  

f e r  r ed. 

Therefore  the c r o s s -  

Two design cases  a r e  computed using two different choices for  

the shor t  period mode model poles. 

Model 1 possibly represents  the most  desirable  choice. but the damper 

gain may be too high. 

These a r e  shox'n on f igure 0-2. 

Model 2 would correspond to a Ioxver damper 
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i Mode Poles  

Actuator Mode Poles  

Model 2 

Good 
/ % a t .  

/ 

Model Open- Loop 

-15 -14 - 1 3  -12 -7 -6 -5 -4 -3 -2 - 1  

NEGATIVE REAL AXIS 

Figure  6 - 2  Relationship of Poles  for  Models 1 and 2 
to  Longitudinal Handling Qualities Cr i te r ia  

gain and sti l l  b e  a sat isfactory solution. In each case  the model includes 

a pole for the actuator mode that is sufficiently far to  the left  t o  have l i t -  

tle effect on the handling qualities. The poles fo r  the two models a r e  

Model 1 
S = - 1 . O * j 4 . 2  

S = -15.0 
SP 

a 

Model 2 

S = -2.0 z t j 4 . 2  
SP 

a 
- S - - 15. 0 

(6-5) 
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where s 

p ol e s r e s p e c t iv e l  y . 
and s re fer  to  the shor t  period mode and actuator mode S P  a 

The damper  sys tem configuration considered used pitch r a t e  

feedback and a feedback around the s e r v o  actuator ,  as shown in figure 

6-3. 

parameters .  

period mode poles a r e  c lose to  those of the model and the actuator mode 

pole is relatively near  that of the model. 

The two feedback gains k and k6 are  the f r e e  design 
q 

These are to  be selected s o  that the closed-loop short  

The closed-loop t ransfer  

function is 

q(s)  - -81.4 ( s  t . 2 2 6 )  - c , .  ... 
L 

s 5 + a s  + a s t a g  
2 1 

where 

Servo -Actuat or Aircraf t  

-12. 2 ( s  f 0. 2 2 6 )  y z t  

(6-7) 

9 

Figure  6-3 Block Diagram of Pi tch Damper Configuration 
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a = 114 t 114k6 - 18.4k 
0 q 

= 20. 13 t 3. 03k6 - 81 .4k  
“1 ¶ 

a = 7.13 t 6 .67k6 2 

This design problem is a n  example of the special  situation 

discussed in section 3. 2. 2 in which the specifications a r e  only 

on the closed-loop poles and the z e r o  is unaffected by the f r e e  parameters .  

In such a case ,  the special  form of the Model PI, 

can be used. The model coefficient vectors  for the twb models a r e  

obtained by forming their  charac te r i s t ic  equations f rom (6-5) and (6-6) 

r e s  pec t ively . 

Model 1 

s3 t 17.0 s2 t 48.64 s t 279.6 

- &’ = [ 279.6 48.64 17. 0 11 
(6-10) 

Model 2 

s3 t 19.0 s2  t 81.64 s t 324.6 
(6-11) 

- 8’ = [ 324.6 81.64 19. 0 1 1  

The problem is now s e t  up in the fo rm discussed in the previous 

chapter to  apply the general  computer program for the Mode P I  (Appendix 

B). 
cients (6-8) and punch the data ca rds  for  (6-10) and (6-11) for  the appro-  

pr ia te  model. 

One need only to  wri te  the subroutine COEF to  generate  the coeffi- 

Solution for  Model 1 

An initial choice for the f r e e  parameters  of 

k6 = 0.9 deg/deg 

k = - 0.5 deg/deg p e r  s e e  
q 
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r e s u l t e d  in  f ina l  va lues  of 

kg = 1. 315 deg/deg 

k = -0.288 deg/deg p e r  s e c  
q 

The  co r re spond ing  c losed - loop  t r a n s f e r  funct ion is 

T h i s  so lu t ion  is c o m p a r e d  to  the  mode l  and  the d e s i g n  s p e c i f i c a -  

t ions  on f i g u r e  6-4. The c losed - loop  s h o r t  pe r iod  m o d e  poles  a re  s e e n  

IMAGINARY 

AXL2 

P o l e s  

X No P i t c h  D a m p e r  

With P i t c h  D a m p e r  
b y  Model P I  

0 Model 1 
Good 

Z e r o  

0 X-15 
Sat .  Acc. 

S n  4 
U X* - 0  

-?5 -14 -13 -12% -6 -5 - 4  -3  -2 - 1  0 

NEGATIVE REAL AXIS 

F i g u r e  6-4 C o m p a r i s o n  of Model P I S o l u t i o n  P o l e s  for 
Model 1 t o  Longi tudinal  Handling Qual i t ies  C r i t e r i a  

175 



0 .020  

0, 015 
q 
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to  b e  ve ry  close to  those of the model and, m o r e  important,  in the 

region corresponding to  Satisfactory handling qualities. It' s interest-  

ing to  note that the pitch r a t e  feedback gain for  this solution is approxi- 

mately the s a m e  as a gain setting of 4 in the actual X-15 aircraf t .  The 

X-15 pitch damper  gain setting range is f r o m  1 t o  10 corresponding to  

a gain range of 0.075 to  0. 750 deg per  deg/sec (51). The gain, k 

selected using the Model PI is certainly of a rea l i s t ic  magnitude. 
q' 

F igure  6-5 shows the t ime response of q, a, n and 6 for a $ 
Z h 

n g t l  pull-up maneuver for  the dampers  off X-15, model 1 and the dampers  

on X-15 designed by the Model PI method. 

essentially the same as the model. 

the s a m e  as those for the X-15. 

The dampers  on case  is 

The m o d e l ' s  ze ros  are taken to  be 

Solution for Model 2 

An initial choice for the f r e e  parameters  of 

k6 = 1.0 deg/deg 

k = -0.6 deg/deg per  s e c  
9 

resul ted in final values of 

k 6  = 1.620 deg/deg 

k = -0.661 deg/deg p e r  s e c  
9 

The corresponding closed-loop t ransfer  function is 

-0.0588 (1 t L, 
(6-13) - 0. 226 - 

4. 7 
'h ('1 2(0.43) 

P 

This solution is compared to  the second model and the design 

specifications on figure 6-6. 
to  the model and near  the Good handling qualities region. 

rate feedback gain in this case  corresponds approximately to  an  actual 

X-15 pitch damper  setting of 9 ,  s o  that the gains a r e  not unrealist ic 

in magnitude. 

Again the Model PI solution is very close 

The pitch 

The t ime responses  fo r  this solution presented in 
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f igure 6 - 7  show resu l t s  similar t o  the first design, only more heavily 

damped. 

- -  

IMAGINARY 
AXIS 

1 

Poles  } X-15 
x No Pi tch  Damper 

With Pitch Damper 
by Model P I  

0 Model 2 

Z e r o  

0 X-15 

Good 

Sat. Acc. 
/ 

NEGATIVE R E A L  AXIS 

Figure  6-6 Comparison of Model P I  Solution Poles  fo r  
Model 2 t o  Longitudinal Handling Qualities Cr i te r ia  
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6. 2 Lateral-Directional Stability Augmentation System for  the 

X-  15 Aircraf t  

Design of a multivariable flight control sys t em by the Model PI 

method is i l lustrated h e r e  by a n  example that w a s  previously t reated in 

re ferences  27 and 28 by l inear  optimal control theory and in re ference  

24 by the model-referenced ISE method of parameter  optimization. 

trea.tment presented he re  differs f rom these previous works in respec t  

to  the design object, a s  it did in the pitch damper  example of section 

6. 1. In re ferences  24, 27, and 28 the design objectives were  to match 

the t ransient  responses  of a l inear  model t o  an  initial condition in s ide-  

s l i p  angle and t o  a n  initial condition in rol l  ra te .  

responds to the dynamic charac te r i s t ics  of a T-33 t ra jner  modified to  

have generally good handling qualities. 

tatively that producing a design with t ransient  responses  s imi la r  to 

those of the model for the s a m e  initial conditions is generally desirable ,  

one must  still check the actual handling qualities charac te r i s t ics  of the 

result ing design against  the appropriate  c r i t e r i a  of the f o r m  discussed 

in section 2. 1. 1. 2. The approach taken here  in the Model P I  design is 

fundamentally the same  as that discussed in Chapter 5. 
the design specifications a r e  in the fo rm of la teral-direct ional  handling 

qualities cr i ter ia .  

sent  the c r i te r ia .  

The 

The model used co r -  

While one might s ta te  quali- 

In this example 

Starting a t  this point, models a r e  selected to r ep re -  

Then a SAS design is synthesized using the Model PI. 

Finally the design is judged by the actual handling qualities c r i te r ia .  

The discussion a t  the beginning of section 3 .  2. 3 in Chapter 3 

on the formulation of multivariable control sys tem design problems is 

quite pertinent to  this example. 

la ted as a multivariable design problem, one can obtain a fair ly  good 

des  ign by treating instead the des  ign of a simplified single input/output 

sys tem representing only the poles of the actual system. 

ma te  design approach will be presented f i r s t .  

methods for designing multivariable control sys tems proposed in s e c -  

tion 3 .  2. 3 wi l l  be illustrated. 

Although it is mos t  accurately fo rmu-  

This approxi- 

Then two of the three 
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6. 2. 1 Problem Formulat ion 

Generally a n  a i r c ra f t ’  s la teral-direct ional  motion for  smal l  

perturbations can be  descr ibed approximately by 

p = L p  t L r  t L P t  L 6 6  t L 6 6  
a V a V P r P 

i = N p  t N r  t N P t  N 6 b a  t N 6 6 v  
a V 

P r P 

= (g /v )+  - r t Y P + Y 6 
P 6v 

(6- 14) 

where 

P is the rol l  r a t e  

r is the yaw rate 

P 
4 is the bank angle 

6 

6 

is the angle of s idesl ip  

is the r oll contr ol surface deflection 

is the ver t ical  s tabi l izer  deflection 
a 

V 

a r e  dimensional stability and control derivatives.  

The numerical  values used for this example in references 24, 

27, and 28 a r e  l is ted in table 6-2. 
X-15 a i r c r a f t  at  a Mach number of 5 .5  and a t  a n  altitude of 147,000 

f ee t  (flight configuration and weight were  not specified). 

They are  the charac te r i s t ics  of the 

Using the numerical  values f rom table 6-2  in equation (6-14), 

one can obtain the open-loop X-15 t ransfer  function of rol l  control 

surface deflection to  rol l  r a t e s  as 
(6-  15) 

23,700 s 1 t 

(h)2] 2( 0. 0078) 
P(S) - - [ 2::: ;:,” 

S 
6a(s) (’ - 0. 0033 ) ( l t  O.;645)[lt (1.72) 

Subsidence 
Spiral  R 011 Dutch-r 011 
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Roll Control t o  Roll Rate Transfer  Function of X-15 IMAGINARY 
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\ 2.5 1 1.5 
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Figure  6-8 Lateral-Directional Handling Qualities of the 
X-15 Aircraf t  (SAS Off) at Mach No. 5 .5  and 
Altitude of 147,000 Feet 
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The specific la teral-direct ional  handling qualities c r i t e r i a  for  
this example were  presented in figure 2-3 of Chapter 2. 

repeated in figure 6-8,  and the poles and ze ros  of equation (6-15) have 

been superimposed. 

condition (without a SAS) would be  predicted to  have Unacceptable ro l l  

and Dutch-roll handling qualities. It is apparent that a SAS is needed 

These are  

Based on these c r i t e r i a  the X-15 at this flight 

to  increase the rol l  damping and Dutch-roll mode damping in order  t o  

obtain Good or at l ea s t  Satisfactory handling qualities. 

Although the handling quali t ies c r i t e r i a  used he re  are described 

ent i re ly  by t e r m s  appearing in the p( s ) /6  ( s )  t ransfer  function, they can 

not be adequately represented in an  analytical design method by jus t  a 

model of the rol l  command to rol l  ra te  t ransfer  character is t ics .  Part 

of the c r i t e r i a  requi res  the complex zeros  of (6-15) to cancel or nearly 

a 

cancel out the Dutch-roll  mode poles. 

would have such a smal l  Dutch-roll mode residue that it would e s sen -  

tially neglect that mode. 

rol l  r a t e  t ransfer  charac te r i s t ics ,  it  is necessary  to  have a model of 

some t ransfer  charac te r  ist ics in which the Dutch-roll mode is dominant. 

A suitable one is the yaw command to  sideslip angle t ransfer  function. 

Before selecting the specific models to use in this case ,  it is helpful to  

f i r s t  form the corresponding sys tem closed-loop t ransfer  functions. 

A possible SAS configuration-’ is shown in figure 6-9. 
configuration is the s a m e  as  that considered in reference 24 ,  which 

pointed out the need for  a high-pass (wash-out) filter t o  eliminate the 

yaw ra t e  feedback in a steady turn. In this example,  the dynamics of 

the motion senso r s ,  the SAS se rvos ,  and the control sur face  actuators  

a r e  neglected. 

considered is shown in figure 6-10. 

a t ime constant of one second, is the s a m e  as that used in re ference  24. 

The rol l  r a t e ,  sideslip and yaw r a t e  feedback gains,  denoted by k 

A model with this charac te r i s t ic  

In addition to a model of the rol l  command to 

4. 

This 

A mathematical  block d iagram of the configuration to  be 

The wash-out f i l ter  shown, with 

k 
P’ P 

.I. ’P 

This  is not the actual X-15 SAS configuration (51),  which has a yaw 
rate feedback to the rol l  SAS s e r v o  and does not have a sideslip 
angle feedback to  the yaw SAS servo. 
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kp, k B ,  and kr are free design parameters 

Figure 6 -10  Block Diagram of the SAS Configuration Considered 
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and k respectively,  are the f r e e  design parameters .  As shown in 

f igure 6-10, the control surface deflection, 6,(s) and 6v(s) are related 

to  the feedback var iables  and the commands by 

r 

(6-16) 

(6- 17) 

where 

is the pilot rol l  command 

is the pilot yaw command 
P 

a 
5 

6 
V 

P 

The des i red  closed-loop t ransfer  functions a r e  for pilot roll  command 

to  rol l  ra te  and pilot yaw command to  s idesl ip  angle. 

forward,  though admittedly tedious, to  obtain these f rom the Laplace 

t ransform of (6-14) and equations (6-16) and (6-17). 

values l is ted in table 6 - 2 ,  these a r e  

It is s t ra ight  

F o r  the numerical  

where 

(6 -  18) 

(6  - 19) 

5 4 3 
0 D[s)  = s t a s  t a s  t a 2 s 2 t a s t a  

4 3 1 
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P 
= 1. 085 - 5. 116 k - 1.432 k - 0. 0025 k 

a4 P r 
a = 3. 045 - 5.239 k - 0. 105 k t 1.429 k 

3 P r P 
t 6. 746 k k t 0.0128 k k 

P r  e P  

P 
a = 3. 128 - 15. 134 k - 0. 000494 k t 1.513 k 2 P r 

t 0. 118 k k - 6.733 k k 
P r  P P  

= 0. 180 - 15. 011 k - 0.0329 k + 0. 068 kp P r 
- 6. 746 k k 

P P  

(6-20) P 
a. = -0.000624 - 0.000416 k 

4 3 2 
+- b l l S  b10 

( s )  = b14s t b13s f b12s  

b14 = -5. 116 

b13 = -5. 239 -t 6. 746 kr t 0. 0279 k 

b12 = -15. 134 f 0. 118 k - 6. 718 k 

b l l  = -15.011 - 6 . 7 4 6 k  

b10 = 0 (6-21) 

P 

P r 

P 

- bZ4s 4 t bZ3s 3 f b 2 2 ~  2 f bZIS f bZ0 
N[ 6 - 

P 
V 

b24 = -0.0025 

= 1.429 t 0.0128 k 
b23 P 

b22 = 1.500 - 6. Ti33 k 
P 

P b21 = 
b20 = -0.000416 

0. 068 - 6. 746 k (6-22) 
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Two models can  now be  established to  represent  the design 

specifications for  these two t ransfer  relationships. 

relatively simple to select  models with the s a m e  s t ruc ture  as the 

closed-loop system t ransfer  functions by r e f e r r  ing direct ly  to  the 

handling qualities c r i t e r i a ,  f igure 6-8. F i r s t  consider the ro l l  command 

to  rol l  r a t e  model, i. e. 

In this ca se  it is 

(6-23) 

Four  of the models '  poles can be selected in  regions correspond-  

ing to "Good" handling qualities in figure 6-8,  and the complex ze ros  

can be  selected sufficiently close to the Dutch-roll poles. The wash- 

out f i l ter  causes  a n  ex t ra  pole and zero not covered explicitly by the 

c r i t e r i a  in figure 6-8. 

kept sma l l  in order  for it not to  affect the handling qualities s o  it is wise 

to select  the z e r o  relatively close to  the pc~le. 

l ines the infidel is se!ec.ted tt] n e  

However the residue of this extra  mode must  be 

Following these guide 

F i l t e r  R 011 Spiral  Dutch-roll 
Subsidence 

(6-24) 

where the sensitivity selected is such that the model would produce the 

s a m e  rolling moment due to  rol l  control surface deflection as the X- 15. 

The model ' s  poles and ze ros  a r e  superimposed on the handling qualities 

c r i t e r i a  in figure 6-11. An a i r c ra f t  with these charac te r i s t ics  would be 

predicted to have I' Good" handling qualities. 
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Roll Control t o  Roll Rate Transfer  Function, Equation ( 6  
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F igure  6-11 Est imated Handling Qualities of the Roll Control Model 

It is only necessary  to  select  ze ros  to  es tabl ish the yaw com- 

mand to  s idesl ip  angle model. 

t r ans fe r  function numerator  (6-21) and (6-22)  as a guide. Although not 

apparent f rom (6-22) the quantity ( 1  t s )  is a factor of the numerator of 

(6-21) ,  due to  the wash-out f i l t e r ,  and thus one model z e r o  should 

correspond to  this factor.  

other coefficients, the corresponding coefficient in the model could b e  

neglected giving a z e r o  a t  the origin. 

ing b 

One can use the closed-loop sys tem 

Since b20 is very small compared to  the 

Factor ing out (1  t s) and neglect - 
in 16-21) would reduce the numerator to  approximately 20 

( s )  -0.0025 s ( 1  i- s )  [ s 2  - 400 ( c l s  t c ) ]  (6-25) N[6 V , P I  0 
P 
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where c and c a r e  functions of k and a re  at  l e a s t  one order  of 

magnitude l e s s  than 400, s o  that the quadratic term would have factors  

of approximately (s-400 c ) and ( s  + c /c ). Since one z e r o  w i l l  be  far 1 0 1  
into the right half plane the model should have a z e r o  in that vicinity, 

e. g. a t  about +400. 

mode pole s o  that the Dutch-roll mode is dominant. 

selected f o r  the yaw command to sideslip angle t ransfer  function is 

1 0 P 

The remaining z e r o  should be close to  the rol l  

Then the model 

12. 06 s( 1 t s)  P m ( 4  - - 
V ")(' ' 0.005 
' (') ( l  &)(l 1 .4  

e 
(6-26) 

The sensitivity used in (6-26) is such that the model would produce the 

same  side force  due to  the ver t ical  stabil izer deflection as the X-15. 

The geometrical  representations of the models p,(s)/6 ( s )  a 
and P m ( s ) / h V  (SI a r e  P 

P 

@ ; Zlm } 
0 (6-27) 

r e s  pec tively , where 

3' = [o.  112 22.575 35. 143 22.609 7. 805 11 

(6-28) 

and 

-20. 73 64. 71 (6-29)  X '  = [o -5. 116 9. 23 -1m 0 
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X‘ = [ o  -0. 0025 1. 014 -5.508 2L. 5 2  ] -2m 
( 6 - 3 0 )  0 

The elements of x 
for  (6-24) and (6-26) r e spec t ivay .  

and x were  computed f rom the formula (3-8) -2m 0 -1m 

6. 2. 2 An Approximate Design Method 

The design specifications in this example a r e  pr imar i ly  requi re -  

requi re -  ments  on the closed-loop poles, with the exception of the o /o 

ment. 

considering only the dominant poles of the closed-loop sys tem and model,  

i. e. neglect the s p i r a l  mode and all zeros  during the design process .  

Consider the hypothetical sys tem and model given respectively by 

( P d  
Therefore  it may be possible to obtain a n  approximate design by 

- a l  Y( s )  - -  
u( s) s 4 t a s 3 t a s 2 t a s  4 3 2 t a  1 

(6-31) 

where a a a3 and a are  functions of k k and k r  given by 

(6-20) and 
1’ 2’ 4 P’ P 

(6-32) 

The denominator of ( 6 - 3  1) represents  essentially the denominator of 

(6-18) when the s p i r a l  mode is neglected and the denominator of (6-32) 

is  the model denominator neglecting the sp i ra l  mode. 

k k and k that give the bes t  match of this hypothetical sys tem to 

the model, in the Model PI sense ,  should a l s o  produce pole locations 

fo r  the actual closed-loop sys tem (6-18) and (6-19) that a r e  close to  

the model poles shown on f igure 6-1 1 except poss(ib1y the sp i ra l  mode 

pole. 

The values of 

P’ P r 
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The mode l ' s  extended coefficient vector for (6-32) is 

- 3' = E 2 2 . 4  35.03 22.57  7. 8 11 (6-33) 

This problem is now s e t  up as a single input/output sys tem design and 

in the fo rm discussed in Chapter 5 for applying the general  computer 

program. The subroutine COEE is writ ten to  generate  a 1' a 2' a 3 and 

f r o m  (6-20). a4 

Model PI Solution for the Approximate DesiPn Approach 

An initial choice for the f r e e  parameters of 

k = -0. 01 deg ba per deg/sec p 
P 

kp = 0.01 deg bV p e r  deg p 

kr  = -0. 1 deg hV p e r  deg/sec r 

res ted  in final values of 

k = -0.429 deg ba per deg/sec p 
P 

= 4.283 deg 6 per deg p kP V 

k r  = -2.680 deg bV per deg/sec r 

The corresponding t ransfer  function for the hypothetical system (6-3 1) 

is 

Y ( S )  - 1 - -  
2(0 .555)  

4 s )  (1 f &)(l  f & ) [ l  f (1. 81) 

(6-34) 

The poles of (6-34) a re  seen  to  be  reasonably close to the model poles 

(6-32). 

(6-20) and (6-21) t o  compute the rol l  command t o  rol l  ra te  t ransfer  

function of the actual sys tem,  the resul t  is 

If the above final values for the f r e e  parameters  a r e  used in 
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1. 82 
2(0. 552) ,- 

)[l ' (1 .82 )  
S 

( 6 - 3 5 )  

The poles and z e r o s  of (6-35) are superimposed in the handling qualities 

criteria in figure 6-12. 

Roll Control to  Roll Rate Transfer  Function, Equation (6-35) 

- Poles  

0 - Zeros  T 3  

Sat, 

' I  Good" 

1. 5 

1. 0 

0 .5  

0 

Dutch -R 011 
Mode 

Roll Mode 

Min, Sat. -_---- 

Figure  6-12 Est imated Handling Qualities of the Model P I  Design 
Using a n  Approximate Design Method 

F r o m  analyzing figure 6-12 one would probably conclude that this design 

should produce a t  least Satisfactory handling qualities. 

pole is not within the I' Good" handling qualities region but i s  w e l l  within 

the Satisfactory region and close to  the "Good region. 

The ro l l  mode 

The Dutch-roll 
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mode has 'I Good" handling quali t ies charac te r i s t ics  including the w /a 

ratio. The effect of the s y s t e m ' s  closed-loop ze ros  w a s  not included in 

this approximate design approach, but the closed-loop z e r o s  are  depen- 

dent on the values of the f r e e  design parameters  as indicated by equation 

(6-21). The particular functional dependence of the closed-loop z e r o s  on 

the f ree  parameters  in this example happens to  be such that the s a m e  

values of the f r e e  parameters  that produce good pole locations a l s o  

produces good z e r o  locations. 

gene r al. 

+ d  

One should not expect this to  happen in 

The approximate approach based only on the sys tem and model 

poles resul ted in a good design, in this ca se ,  and one would not have to  

proceed with the design process  any fur ther  using a more  complete 

description of the sys tem and model. 

mate  method does not in itself produce a sat isfactory design, it is a 

good f i r s t  s tep in the synthesis process  whenever the specifications 

include specific requirements  on closed-loop pole locations. 

Even in cases  where this approxi- 

6. 2. 3 Design by the Second Method for Multivariable Systems 

The second method for multivariable system design using the 

Model PI is descr ibed in Chapter 3, section 3. 2. 3. 2. 

method it is necessary t o  define a weighted average of the two models 

(6-27) that corresponds to  (3-103) in Chapter 3. 

two models should be weighted equally since the ro l l  mode charac te r i s -  

t i c s ,  whicharedominant in p ( s ) / b  ( s ) ,  and the Dutch-roll mode 

charac te r i s t ics ,  which a r e  dominant in om( s ) / d v  ( s ) ,  a r e  equally im- 

portant. The pseudo 

IC vector of the weighted averaged model is then given by 

To  apply this 

In this example the 

P 
m a 

p 
Therefore  the pr ior i ty  number c should b e  0. 5. 

4. -** 

-8. -8- 

Equation (3-104) reduces to  (6-36) because x = when the 

sys t em and model are of the same order .  
-mo -0 
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X X 
0 

0 0 

-2m 
X = 0 .5  -lm0 + 0.5  

IIfflm II I1 Xzrn II -0 (6-36) 

where x and x a r e  given by(6-29) and (6-30) respectively. 

-1m and x 
0 -2m 0 -1m 

Using the numerical  values of x -zrn gives 
0 0 

X' = [ 0  -0.0376 +O. 0899 -0. 275 + 0 .9  541 

(6-37) 
-0 

The mode l ' s  extended coefficient vector is, of course,. given by (6-28). 

The subroutine CALSYS MOD 2 forms  the weighted averaged 

system f rom (6-18) and (6-19) which a r e  entered into the program via 

subroutines COEFl and COEF2 respectively. The relationships (6-20)  

and (6-21) a r e  writ ten into COEFl  and the relationships (6-22) a r e  

writ ten into COEF2. 

and in COEF2 a s  CC = (1-c)  = 0. 5. 
entered a s  input data ( s e e  Appendix B). 

The value of CC in COEFl  is given a s  CC = c = 0. 5 

The pseudo IC vector (6-37) is 

Model PI  Solution for Second Method 

-6 Using a pseudo IC weighting factor in the Model P I  of 4. 0 X 10 

and an  initial choice for the f r e e  parameters  of 

k = -0.429 deg 6, per  deg/sec p 

k = 4. 283 deg 6v p e r  deg 6 

k r = -2.680 deg per  deg/sec r 

P 

P 

which were  the final values of the approximate design in section 6. 2. 2, 

resul ted in final values of 
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k = -0. 286 deg ha per  deg/sec p P 

k = 4. 209 deg 6, p e r  deg p P 

kr = -3.086 deg 6, per  deg/sec r 

Using these values in equations (6-20) - (6 -22)  gives closed-loop 

t ransfer  functions of 

S 
I.. 62 18, 273 s (1  t 3. 24 2(. 566) 

e( s) - - ~ ) [ "  (1.62) 
6 (SI S 

+ 

)[l ' (1. 57) 1. 57 a P (l ' &)(l *)(' - 0.00018 
(6-38) 

and 

(6 -39) 

This design is compared to  the handling qualities c r i t e r i a  in figure 6-13 

which shows it t o  have It Good" handling qualities character is t ics .  

only significant difference between this design and that obtained by the 

approximate approach of the previous section is the rol l  mode pole loca-  

tion. 

qualities region. However the boundaries a r e  not sharply defined and 

the difference in the rol l  mode poles is so  slight that  the difference in 

handling qualities may hardly be  noticeable. 

The 

In this case  the rol l  mode pole is within the "Good" handling 
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Roll Control t o  Roll R a t e  Transfer Function, Equation (6-38) 

0 - Poles  

0 - Zeros  

Sat. 

I '  Good" 

1.5 

1. 0 

0 .5  

0 

% 
"d 

Dutch-R 011 Acc 
Mode Sat. 

'I Good'! Min. Sat. ---/, 
n i  

0--\ 
I ' 1  

W I U  * I 

Figure  6 -  13 Estimated Handling Qualities of the Model PI Design 
Using the Second Method for  Multivariable Systems 

6. 2 .4  Design by the Third Method for  Multivariable Sys tems  

The third design method for  multivariable sys tems descr ibed 

in Chapter 3 ,  section 3. 2. 3. 3 is to  apply the single input/output method 

alternately to  the design of the closed-loop I' sys tems"  represented  

by (6-18) and (6-19) with equations (6-24) and (6-26) as the respect ive 

models. 

this approach directly. 

COEF for  each "system" and provide the input data ca rds  for  the 

appropriate model. 

The design example is a l ready  in the proper  f o r m  to  apply 

Al l  that is necessary is to w r i t e  the subroutine 

First consider selecting the free parameter values k , kS, and 
P 

k that provide the bes t  Model PI match of the s y s t e m ' s  p/d- r a t ransfer  
P 

charac te r i s t ics  to  the model'  s p /6 t ransfer  Characterist ics r e p r e -  
m a  

sented by its extended coefficient vector (6-28) and pseudo IC vector 
P 
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0’ (6-29). The subroutine COEF for  this s tep is wri t ten to  generate  a 

a l ,  a2,  a3 and a f r o m  (6-20) and b 10’ b l l ’  b12’ b13 and b14 from 4 
(6-21). 

throughout. 
A pseudo IC weight factor  of 4. 0 X l o w b  is used in the Model PI 

Model PISolu t ionfor  p/6 with k , k and k F r e e  
p-P’-r- 

P 
Starting f rom a n  initial choice for  the f r e e  parameters  

a 

k = -0.429 deg 6 p e r  deg/sec p P a 

k = 4. 283 deg 5 per deg p P V 

k = -2.680 deg 6v per deg/sec r r 

which were  the final values of the approximate design approach, 

resul ted in final values for this s tep of 

k = -0. 270 deg 6a per deg/sec p 
P 

= 4. 206 deg 6 per deg /3 kP V 

k r  = -2. 974 deg 6 per deg/sec r 
V 

The next s tep is to hold k fixed a t  the value -0. 270 and then 
P 

determine the Model PI  solution for matching the sys tem’  s p/6 

t ransfer  character is t ics  to  the model ’s  P / 6  charac te r i s t ics  with 

jus t  k and k as f r e e  parameters .  The rol l  r a t e  feedback gain is held 

constant because it is known to  be the l e a s t  effective of the three parame- 

t e r s  in changing the s idesl ip  response to  a yaw command. 

tine COEF in this s t e p  generates  the a a a a and a4 but with 

k = -0.270, a n d b  

(6-28) and (6-30) r ep resen t  the model t o  b e  used here .  

V 
P 

m v  
P 

P r 

The subrou- 

0 ’  1’ 2’ 3 
and b f rom (6-22).  Equations 20’ b21’ b22’ b23’ 24 P 
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Model P I  Solution for P/ti with k and k F r e e  P-r- 

Starting with an  initial choice of k P 
the above s tep,  resulted in final values for  this s tep of 

P V 

and kr given by the final values of 

= 4.562 deg 6, per deg p ki3 

k = -3.084 deg 6 per deg/sec r r V 

These values together with the previous value for  k should b e  a e 
good compromise between matching the two models. 

the f i r s t  step is repeated with k e P r 
values. 

steps. 

significant figures. 

multivariable sys tem design is the following: 

To check this,  

f r e e  and k and k fixed at  these la t te r  

The procedure for doing this should be  c lear  f r o m  the above 

The resulting Model PI design did not change k'. t o  within three  
P 

Therefore  the final solution by third method for  

Model PI  Solution for  Third Method 

k = -0. 2 i O  .deg 6 a deg/sec p e 
= 4. 562 deg 6v p e r  deg p k B  

k = -3. 084 deg hV per deg/sec r r 

Using these values in equation (6-20) - (6-22)  gives closed-loop t ransfer  

functions of 

( 6  -40) 

(6-41) 
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This design, as shown on figure 6-14, would a l s o  be predicted 

to  have Good" handling qualities character is t ics .  

Roll Control t o  Roll Rate Transfer  Function, Equation (6-40) 

El - Poles  

0 - Zeros  

Dutc h-R 011 
Mode 

3 

Acc. 

Sat. 
Good" 2 

7 

1 

ACC. Sat. 'I Good" "ii - 
w9 

0 

Roll Mode 

G ood Min. Sat. .-------- /c 
0 

,--* . , \* 
L ~n . 

U --a- / # 

-5 -4 - 3  -2,,,,- -1 0 1 

Figure  6- 14 Estimated Handling Qualities of the Model P I  Design 
Using the Third Method for Multivariable Systems 

Comparing figures 6-13 and 6-14 one sees  that there  is no significant 

difference between the design obtained f rom the second" and third" 

methods for multivariable sys  tem design. 

Obtaining the final solution in this example by the third" method 

actually involved four applications of the single input/output Model P I  

design procedure,  with the first application being the approximate 

design approach of section 6. 2. 2. 

the value of k 
and the last application verified that these values were  sat isfactory for  

the p/6 as well as the p / 6  t ransfer  character is t ics .  

The second application established 

the third application established the values of k and k r ,  
P Y  P 

V 
P P 

a 
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The f i r s t  and most  important r e su l t  is  that  the Model PI produced 

conceptual designs for  a stability augmentation sys t  

vide Satisfactory to  '' Good" la teral-direct ional  handling qualities for  

the X-15 a t  the flight condition considered. That was the objective of 

the example. F igures  6-12, 6-13, and 6-14 show that the design speci-  

f ication of obtaining at l e a s t  Satisfactory handling qualities is satisfied 

by all three of these Model PI designs. 

response of the X-15 with a stability augmentation sys tem is i l lustrated 

in figure 6-15 for  the design obtained by the third method. 

two designs give quite s imi la r  improvements. 

that  would pro-  

The improvement in the dynamic 

The other 

It isn' t possible to  compare these designs direct ly  to  the actual 

X-15  SAS because the feedback configurations a r e  different. 

rol l  and yaw ra te  feedback gain ranges used in the actual X-15 SAS 

should indicate the general  gain levels  that would b e  reasonable to  im- 

plement. 

0 to  -0. 5 deg 6 

f rom 0 to -0. 3 deg 6 

r a t e  gains in the range of -0. 2 7  t o  -0.43 deg 6a p e r  deg/sec p which is 

within the X-15 SAS range and thus a r e  reasonable to  implement. The 

yaw rate feedback gains obtained here ,  ranging f rom about -2. 7 t o  -3.  1 

deg 6 
ing X-15 SAS range, which indicates that they a r e  probably too high or  

at l e a s t  higher than necessary.  

cedure but ra ther  the model selected. 

one can see that the Dutch-roll mode damping selected for  the model w a s  

very  conservative. A much lower damping ra t io ,  as low as 0. 2, could 

be  used for  the model and still have Satisfactory Dutch-roll handling 

qualities charac te r i s t ics ,  providing the other conditions are met. Since 

the yaw ra t e  gain affects the Dutch-roll damping pr imari ly ,  a 

value would resu l t  f rom the Model P I d e s i g n  if a lower damping ra t io  

were  used in the model. 

a l e s s  conservative model would be a be t te r  approach for obtaining a 

But the 

The rol l  r a t e  feedback gain on the X-15 SAS (51) ranges f r o m  

per deg /sec p ,  and the yaw ra t e  feedback gain ranges 
a 

per deg/sec r .  The Model PI designs have rol l  
V 

per deg r ,  a r e  a n  order  of magnitude g rea t e r  than the correspond-  
V 

This is not a fault of the design pro-  

Referr ing back to  figure 6-11 

e r  

Repeating the Model PI design procedure with 

20 2 



0 

0 m 0 
Irl 

0 Ln 
0 

rl d 

u 
I4 
m 

0 
9 

I 

-# 
0 0  

I 4  

t o  0 . .  
I I 

c, 
5 a 
c 
a c 

H 

2 
E 

E: 
M 

0 

.A 
c) 
3 m 
rd 

3-( 
ti 
a, 

a" 
H 

PI 

a c 
cd 

Ln 

9 
a, 
k 
1 
M 

E 4 

E I 

0 u 

d 

A 
?-I 

.r( 
0 

a 
a, 
m 

bl 

c, 

4 
rd 
Y 



real is t ic  value for the yaw rate gain, than placing a constraint  on the 

magnitude of the yaw r a t e  gain. By using the first design as a guide, 

one could select  a new model with a lower Dutch-roll damping that 

could quite likely be matched ve ry  closely by the Model PI design. This 

gives the designer more  control over the resulting poles and z e r o s  loca-  

tions than mere ly  placing a constraint  on a f r e e  parameter .  

The sideslip angle feedback gains result ing f rom the Model PI 

per deg p ,  approach for  the model chosen, which a r e  around 4 deg 6 

a r e  probably too high. 

*7. 5 degrees  of ver t ical  s tabi l izer  deflection (51) s o  that l e s s  than 2 

degrees  of sideslip would sa tura te  the yaw s e r v o  with this gain. 

a l e s s  conservative model as discussed above would a l s o  r e su l t  in a 

lower sideslip gain. 

V 
The X-15 SAS yaw s e r v o  is authority l imited to  

Using 

This discussion of the practical  limitations that might a r i s e  in 

implementing the conceptual designs is included to emphasize the syn- 

thesis  nature of the Model P I  method. 

plan on severa l  design i terations to  obtain a n  acceptable,  practical  design. 

This is t rue with other analytical design methods also. 

the designs in re ferences  24, 27  and 28 for  the same problem considered 

he re ,  a l so  have feedback gains that would be too high for practical  imple- 

mentation. To  obtain practical  designs one would have t o  repea t  the pro-  

cedures  used in the particular reference with an  appropriate modification. 

In the l inear  optimal control approach used in re ferences  27 and 28, the 

result ing feedback design is much m o r e  complicated than necessary ,  

and the designer would want to  simplify it, which involves additional 

synthesis. Although these analytical techniques do not provide an  auto- 

mat ic  design they a r e  much s impler  to  use than conventional techniques 

on complex design problems such as this example. 

with conventional techniques can  appreciate  the tedious effort  that would 

be  involved in designing this multivariable sys tem by root  locus,  Nyqyust 
or Bode techniques. 

In complex problems, one should 

F o r  example, 

Anyone famil iar  

The effectiveness of the Model PI in the three design approaches 

i l lustrated is indicated in the following f igures  that compare the resu l t -  

ing designs to  the models used. F igure  6-16 compares  the poles and 
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and ze ros  of the p/d and p/6 
P P 

t ransfer  functions for  each design to  a V 

those of the models (&ly the p i l e s  a r e  compared for  the approximate 

approach, section 6. 2. 2). 

z e r o s  are close to  the respective model poles and zeros .  

responses  of the X-15 with the Model P ISAS designs for  s tep ba 

b inputs are  compared to  the corresponding models '  time responses  

In each case the Model PI design poles and 

The t ime 

and 
P 

V P 
i n f igu res  6-17 to  6-19. Part a in each f igure is for  a b s t e p  input and 

P a 
pa r t  b is for a 6 

every design but the divergence is s o  slow (the t ime constants a r e  over 

one hour) that it is of no significance. 

rol l  r a t e  and sideslip used to  normalize the responses  in these figures 

a r e  the values that would resu l t  if  the sp i ra l  mode were  neglected. 

These t ime responses  show that in each case  the Model PI produced a 

design that matches the model ' s  response fair ly  closely. 

show that in t e r m s  of t ime responses  the three  designs a r e  not signifi- 

cantly different. 

stepinput. The s p i r a l  mode is actually unstable in 
P 

V 

The 'I steady-state" values of 

They a l so  

205  



Model P I  Design by 
Approximate Approach 

(Poles  Only) 

-4 -3 -2 -1 0 

Model PI Design by 
' I  Second" Method 

- 4  -3 -2  -1 0 

B c 
Model PI  Design by 

I '  Third" Method 

-4 -3 -2 -1 0 

( a )  Roll Command t o  Roll Rate  Transfer  Function 

F igure  6-16 Comparison of the Model and Model PI Design 
Poles  and Ze ros  for  the Three Design Approaches 
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Open Symbols - Model PI Designs 
Closed Symbols - Model 

Model PI Design by 
Second" Method 

1 i (400) (573) 
1 i no--- 

-4 - 3  -2 -1 0 

Model PI Design by 
Third" Method 

-4 -3 -2 -1  0 

(b) Yaw Command to  Sideslip Angle Transfer  Function 

m 

Figure  6- 16 Concluded 
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F i g u r e  6-17 Concluded 
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F igu re  6-17 Time History Comparison of the Model and Model PI 
Design (Approximate Method) 
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lo r Second Method Design 
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6. 3 A Velocity Command Flight Control System for  a VTOL Aircraf t  

The design of a longitudinal flight control sys tem (FCS) for  

VTOL a i r c ra f t  in which the pilot direct ly  commands l inear  velocity with 

r e spec t  t o  the ground is presented in re ference  52. 

s ta te  velocity proportional t o  the control st ick displacement should 

significantly reduce the pilot control task during hover and low speed 

flight particularly for  IFR operation. Hands-off" flight, i. e. z e r o  

velocity command, automatically produces a hover. A constant glide 

slope, which is necessary  for a n  IFR landing approach, is established by 

commanding constant horizontal and ver t ical  velocities. 

f r o m  the des i red  glide slope could be  easi ly  made by slight adjustments 

Having the steady 

Deviations 

of one control st ick position. 

This example is a redesign of the velocity command FCS in 

reference 5 2  for  the hover flight condition. 

used here  are  somewhat different f rom those in reference 52 in that 

the longitudinal handling qualities c r i t e r i a  discussed in Chapter 2,  

section 2. 1. 1. 3 are  included he re  as p a r t  of the specifications. 

example is a good il lustration of the way engineering specifications 

may force  the designer to  compromise between two desirable  but con- 

flicting charac te r i s t ics  and of the way such compromises  enter into the 

Model PI design method. 

than those used in reference 52, one should expect the Model PI design 

obtained in section 6. 3.  2 to  differ f rom that in reference 52. In order  

t o  compare design techniques, the velocity command FCS is a l s o  designed 

in section 6. 3. 3 by the Model P I  method using specifications compara-  

ble to  those used in re ference  52. 

The design specifications 

This 

As a re su l t  of using different specifications 

6. 3.  1 Problem Formulat ion 

A functional block diagram of the sys tem to be considered is 

shown in figure 6-20. 

Boeing Vertol CH-46C tandem-rotor helicopter. The feedback control 

sys tem consists of a n  inner -loop for  pitch attitude stabilization and a n  

outer-loop for  obtaining the des i red  velocity command response.  The 

vehicle attitude and velocity with respec t  to  a local ver t ical  reference 

The specific VTOL aircraft considered is a 
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f r a m e  are  sensed by a n  inertial  measurement  unit 

p a s  sed through appropriate compensation 

var ies  the total collective pitch of the two r o t  

increases  total collective pitch on one and dec  

to produce a pitching moment. A forward ve command input 

produces a nose down pitching moment tiltin l icopter ,  and hence 

the thrust  vector ,  forward. The forward component of th rus t  acce le r -  

ates the helicopter to the des i red  velocity. 

velocity is reached,  the pitch attitude mus t  reduce in magnitude to  

the new t r i m  value. 

These  signals are  

r k s  to  a s e r v o  that 

fferentially,  i. e. 

e s  it on the other, 

By the t ime the des i red  

One cannot expect t o  design a n  extremely fas t  velocity command 

response sys tem because i t  would require  rapidly pitching over to  a 

l a r g e  negative attitude t o  give the l a rge  forward component of thrust  

that  would be necessary  to  produce a fas t  velocity response.  

shor t  t e r m  response would appear  to  the pilot as essentially an  at t i -  

tude control sys tem,  s o  that one must  r e s t r i c t  the pitch control sens i -  

tivity and damping to  values that give a t  l e a s t  Acceptable handling 

qualities a s  defined by c r i t e r i a  such a s  those shown in f igure 2-4 and 

repeated here  in figure 6-21. 

is equivalent to the pitching accelerat ion per inch of control stick de-  

flection and is interpreted by the pilot a s  the pitch control sensitivity. 

Since the control st ick deflection is proportional t o  the velocity com- 

mand signal, the absc i s sa  can a l s o  be  wri t ten as pitching accelerat ion 

per unit velocity command a s  indicated by the second sca le  in f igure 

6-21. 

command p e r  inch of control st ick deflection, which is the value used 

in r e fe rence  5 2  at the hover condition. 

in this example required that the pitch accelerat ion per unit velocity 

command and the damping/inertia pa rame te r s  ie within the Acceptable 

handling qualities boundary in figure 6-21  and, if p os s ible , w ithin the 

Des irable boundary. 

The 

The absc issa ,  control power/inertia, 

This a s sumes  a sca le  constant of 14 feet  per second of velocity 

The design specifications used 

The assumed specifications for the t ime response to a step 

velocity command input are given in figure 6-22.  

response envelopes a r e  shown, corresponding t o  what are  assumed to  

Two velocity 
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t o  be  Desirable and Acceptable ranges of s tep responses .  

closed-loop step response must  lie within the Acceptable envelope 

and preferably within the Desired envelope. The specification on the 

g / V  response represents  the requirements  of f igure 6-21. The 1 

Desirable and Acceptable levels  of 6 / V  

correspond to  values of 0.82 and 1.64 deg/sec 

can conclude to be Desirable  and maximum Acceptable values r e spec -  

tively f rom figure 6-21. 

shown for the pitch attitude normalized by the steady-state value. 

is essentially a l imi t  on the maximum attitude change allowed f o r  a 

s tep command in velocity. 

many t imes the steady s ta te  (new t r im)  value to  obtain'a sufficiently 

l a rge  forward component of thrust ,  but there  is a l imi t  on how far  

the helicopter should pitch over. 

0 /0 s s  w a s  chosen somewhat a rb i t r a r i l y  in this example for lack of the 

specific information for this vehicle, but it is sufficient to  i l lustrate  the 

point. 

The 

X 
C 

indicated on figure 6 - 2 2  
X 

2 C 

p e r  f p s ,  which one 

An Acceptable response envelope is a l s o  

This 

It is necessary  to  pitch over to  an  attitude 

The limit shown in figure 6 - 2 2  on 

T o  re i te ra te ,  the design specifications for  this example a r e  

given by the Acceptable boundaries in figure 6-21 and 6-22 .  

Desirable boundaries define prefer red  goals within the Acceptable 

reg  ions. 

The 

A possible feedback configuration for a velocity command FCS is 

shown in figure 6-23. 

feedback path and a unity velocity feedback. 

a r e  the pitch attitude gain, k e ,  the f i r s t  o rder  lead  time constant, T G  , 
and the velocity gain, k . 
closed-loop s ta t ic  sensitivity independent of the loop gain, if necessary.  

Since the s ta t ic  sensitivity a l s o  affects the handling quali t ies,  the input 

gain will be res t r ic ted  to  a 15% change f r o m  unity. 

open-loop t ransfer  functions for  the VTOL considered at the hover 

flight condition are 

It consists of a f i r s t  o rder  lead  in the pitch attitude . 

The f r e e  design parameters  

An input gain, kI, is included to  adjust  the 
V 

The necessary  

* 

4. -e 

These t ransfer  functions a r e  f rom (Appendix A of re ference  52. 
pole and a z e r o  of e ( s ) / 6  ( s )  that nearly cancel are omitted f r o m  (6-43). 

A 

C 
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Servo - R o t or D y nam ic s : 

Air c raf t  Dynamics : 

( 6 - 4 3 )  

S 

e ( s )  - 0 . 0 2 0 5 6  

6e(s) - (l ' 0 . 8 6 6 9  

2.543 (' 
2(o*  226)  s t ( o* ;29) 2 ]  
( 0 . 4 2 9 )  

S 

(6  - 4 4 )  

where 

is the differential total collective pitch of the two ro to r s ,  

measured  in t e r m s  of inches of control stick deflection. 
e 6 

is the s e r v o  command signal for  6 

of control stick deflection. 

in t e r m s  of inches e e '  6 
C 

e is the pitch attitude, in degrees .  

V is the longitudinal velocity with r e spec t  to  the ground, 

in feet  per  second ( fps) .  
X 

Since the poles of the servo- ro tor  dynamics are  at  l e a s t  a n  

order  of magnitude away f rom the poles of a i r c r a f t  dynamics,  the 

servo-rotor  dynamics w i l l  be neglected during the parameter  optimiza- 

tion process.  

se rvo- ro tor  dynamics included. 

Once a design is obtained it will be checked with the 

The approximate closed-loop t rans  - 
f e r  function of V to  Vx, neglecting the servo- ro tor  dynamics,  is 

xC 
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2 b2s t b l s  t bo 

s t a s 2  t a s  t a 
- - v ( s )  

v ( S I  
xC 

X 
3 

0 2 1 

(6-45) 

where 

= 0.6725 t 19. 70k 7 t 0. 1970k k 
a 2  e 6  v e .  
a = 0.0152 t 19. 70ke t 0 . 4 0 5 0 k e ~ 6  t 0.4809kvke 1 

a = 0. 1593 t 0.4050ke - 10.844k k (6 -46) 
0 v e  

and 

b2  = (0 .  1970kvke) kI 

b l  = (0.4809kvkg) kI  

bo = (-10. 844kvke) k I  

In selecting a model, it is very helpful to  consider a 

approximation to  the velocity command FCS shown in figure 

(6-47) 

rough 

6 -24. 

F r o m  the shor t  t e r m ,  handling qualities standpoint one can neglect 

the velocity feedback and consider only the V 

charac te r i s t ics ,  

to  e m  t ransfer  
xC 

= -0. 55 (Ref. 52) 

F igure  6-24 Block Diagram of a Model for  the Velocity 
Command FCS 
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(6 -48) 

The damping/inertia parameter  in figure 6-28 corresponds to  25w in 

equation (6-48). The maximum magnitude of 9 p e r  unit V for  a 
xC 

m 

step V 

parameter  in figure 6-21. 

initial value of 

input is the pitch accelerat ion per  unit velocity command 
xC 

This maximum magnitude occurs  at the 

which can  be obtained by applying the initial value - 

2 = ]kw2 I deg/s e c 
f P  s (6 -49) 

2 One can select  a combination of 2t;w and kw that would correspond to  

Desirable or at l ea s t  Acceptable handling qualities f rom figure 6-28. 

The velocity s tep response can be  est imated f r o m  the closed-loop 

t ransfer  function 

2 v X ( s )  kw (-0.55) 

v ( s )  s 3  t 2 5 w s 2  t w s t kw (-0.55) 
( 6 - 5 0 )  - - 

2 
m 

2 

C 
X 

and the non-dimensionalized s tep response char t s  in Clark (49). Once 

2 5 w  and kw2 are selected onlyw2 remains  unspecified in (6-50), and its 

is chosen to produce the proper velocity s tep response.  

F igure  6-25 shows  the sequence of handling qualities charac te r -  

is t ics  considered in selecting a model. 

labeled 1 and 2 were  t r ied  first in a n  at tempt  to  obtain Desirable  

handling qualities. 

Acceptable velocity s tep response,  i. e. satisfying the c r i t e r i a  in 

The combinations of parameters 

However it is impossible to  obtain even a n  
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Figure  6-25 Longitudinal Handling Qualities Selected for  the 
Model 

2 f igure  6-22 ,  f o r  any value of w 

velocity response is either too lightly damped or much too slow. 

order  to  speed up the response and yet maintain adequate damping, 

the combination labeled 3 w a s  tr ied.  

handling qualities region of figure 6-25 at the upper l imi t  of the 

Acceptable range of the pitch accelerat ion per unit velocity command 

parameter .  
2 2 I kw I = 1.64 deg/sec per f p s )  and a frequency of w = 1.6 rad/sec,  

resu l t s  in a n  approximate model having a n  Acceptable velocity s tep 

response.  

t ics  as 

with combinations 1 or 2. The 

In 

It l i es  within the Acceptable 

- 1  Using the number 3 combination ( 2 g w  = 2.5 sec  and 

This establishes the dominant model t ransfer  charac te r i s  - 
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According to the guide for selecting the model s t ruc ture  when 

using the Model PI, table 3-5 in Chapter 3, the ode1 s t ruc ture  

fo r  this example is one with th ree  poles and tw , i. e. the same 

s t ruc ture  as the closed-loop sys tem t ransfer  f 

One can see  f rom the block diagram in figure 6-23 that the sys tem'  s 

closed-loop ze ros  a r e  jus t  the ze ros  of the aircraft These 

can a l s o  be used as ze ros  for  the model; therefore  the model selected 

t o  represent  the design specifications in the Model PI is 

ynamics.  

- ( l  - 6.2984 ) ( l  (6-52) 8. 7396 
v ( s )  

v ( s )  

X - m 

( I t  &)[lt - s  t ( - 1:14 ) X C (1. 14) ] 
The s tep response for  this model is compared to  the s t e p  re- 

sponse specifications in figure 6-26 ,  which shows that it l i e s  within 

the Acceptable region but not within the Desirable region. 

up the mode l ' s  velocity response sufficient t o  l i e  within the Desirable 

region would requi re  a l a r g e r  negative pitch acceleration. 

the pitch accelerat ion p e r  unit velocity command would exceed the 

Acceptable l imi t  and the handling qualities would not b e  Acceptable. 

The model (6-52) represents  a sat isfactory compromise between 

obtaining Desirable handling qualities but Unacceptable s t e p  response 

and Desirable  s t e p  response but Marginal t o  Unacceptable handling 

qual it ie s . 

To speed 

But then 

The model ' s  extended coefficient vector and pseudo IC vector 

corresponding t o  (6-52) a r e ,  respectively,  

- 8' = [ 0.903 2. 56 2. 5 0  1. 0 ] (6-53) 

2' = [ x' -5k E l  
m O  -0 0 

X '  = [ -1.0 -. 0165 
-0 

0097 ] (6 -54) 
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6. 3. 2 Design by the Model PI Method 

The problem is now formulated for applying the general  com- 

puter program for the Model PI design method. 

is writ ten to generate the coefficients (6-46) and (6-47). 

k is not considered to  b e  a f r e e  parameter  during the parameter  opti- 

mization process  is assumed to  be unity. 

wards ,  if necessary.  

The subroutine COEF 

The input gain 

I 
It can be  adjusted a f t e r -  

-2 Using a pseudo IC weighting factor of 7. 0 X 10 in the Model 
>k 

PI and a n  initial choice for  the f r e e  parameters  of 

= 0. 1 inch/deg 

- 1  
ke 
~ ( t  = 1.0 s e c  

k = -0. 5 deg/fps 
V 

resul ted in a final value of 

= 0. 156 inch/deg 

= 0.826 s e c  

k = -0. 551 deg/fps 

kg 

7 e  
-1 

V 

Using these values in equations (6-45) - (6-47) gives an  approxi- 

mate  closed-loop t ransfer  function of 

(6 -55) 

The s tep response corresponding to  (6-55) is compared t o  that of the 

model and the Acceptable response envelope in figure 6-27. 

ty response is presented for  kI= 1.0 and k I =  1. 15. 

The veloci- 

One can see that 

.I, -I. 

This initial choice of k 
t o  establish the dominaxt model character is t ics .  

is approximately the value of k used in (6-50) 
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the s tep response is Acceptable if a n  input gain of k I =  1. 15 is used. 

The estimated handling qualities for this design can be  checked by 
considering the approximate t r ans fe r  function of V 

the outer-loop feedback, i. e. 

t o  9 neglecting 
xC 

.. e 
V 

kI( 1. 687)( s t 0. 02056) - - e ( s )  

v (SI ( s  t 0: 0769) [ s 2  t 2(0. 92)(1.  70)s t (1. 70)2 ] 
X 

C (6-56) 

ij (s)  = 1.687kI deg/sec 2 

f p S 

The damping/inertia parameter  for  the dominant second order  mode 

of (6-56) is 2 5 w  = 3. 12  and the maximum 

V input is given by 

per unit V for a s t e p  
xC 

X 
C 

(6-57) 

Model P I  Design 

'r k l =  1.0 0 e k l  = 1. 15 
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Figure  6-28 shows the est imated handling qualities in t e r m s  of these 

parameters  for input gains of kI = 1. 0 and kI = 1. 15, which indicates 

design has charac te r i s t ics  slightly beyond the 

e 35 for es tabl  ing the s e hand1 ing qual it s c r i te r ia .  How 

ge  tested in 

eve r ,  if the range were  extended, it a p p e a r s  that  the M el PI design 

would l ie  in the Acceptable handling qualities r e g i  

As a final check of this design (kI = 1. 15) figure 6-29 presents  

the s tep response of the closed-loop sys tem with the servo- ro tor  dy- 

namics included. 

satisfied. In addition, the lag due to  the servo- ro tor  dy 

The Acceptable s tep response specifications are 

reduced the maximum magnitude of e / V  2 to  about 1. 2 deg/sec per xC 

fps which is nea re r  the Desirable handling qualities region in figure 

6-28 than indicated by the third order  approximation. 

appears  t o  be  a good compromise between the requirements  of a 

fas t  velocity response and Acceptable sho r t  t e r m  handling qualities. 

6.3.  3 

This design 

Comparison with Design in Reference 52 

The object of this section is to  show that if a r e su l t  similar to  

that obtained in r e fe rence  52 is des i red ,  the Model PI method can 

provide a comparable design. 

reference 52 for  the response to  a command input a r e  essentially that 

any oscil latory mode should have a damping r a t io  of 0 .5  or g rea t e r  

and that the velocity response t ime should be less than 4. 0 seconds. 

These specifications can be represented by a model with a V 

V t ransfer  function of 

The design specifications used in 

to  
X 

C 

X m 

(6-58) )( ' 8. 7396 
v ( s )  S 

- 6.2984 ( - 
v (SI 2(0. 7 )  

- xm 

X 
C 

The s tep response of this model,  presented in figure 6-30, shows 

that the velocity reached 95% of its final value in less than 4 .0  seconds. 

The extended coefficient vector and pseudo IC vector corresponding 

to  (6-58) are 
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F igure  6-30 Velocity Step Response of a Model Representing 
the Specifications of Reference 52 

3' = [4. 0 6.8 3.8 1. 0 1  - 

[ Z h  ; -x' 4 - E' - 

X' = [-1.0 -.0727 0.09871 

-mO 0 -mO- 

-mO 

The feedback configuration considered he re ,  shown in figure 

6-31, differs f rom that in reference 52 only in the velocity feedback 

path. A f i r s t  o rder  lag with a 0. 3 second time constant is included 

in the velocity feedback path in reference 52. The integral-bypass 

shown in the forward path in figure 6-31 is the same a s  that used in 

reference 52 and is assumed to  be  fixed. 

in the pitch attitude feedback is chosen to  allow for lead in the frequen- 

cy r ange  of the dominant.modes and yet attenuate high frequency noise. 

It can  be writ ten as 

The lead-lag configuration 

2 
( 1  t T I S )  ( 1  T Z S )  ( 1  t 7's  t 7 - 5  ) - - 

2 
( 1  T3S) 

2 (1  t 7 s) 
3 

(6 -6 1) 

where 
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2 7 -  = 7 t r  e 1 

7- = 7 7 e 1 2  

The double lag  t ime constant,  r3, can be set by noise considerations 

and should not significantly affect the dominant s tep response charac- 

ter is t ics .  is assumed to be a fixed constant in the 

parameter  optimization process  and to have a sufficiently small 

value to  be  negligible. 

sation constants, 

design parameters .  

the design process  but wi l l  be included in the final check of the design. 

The closed-loop t ransfer  function of V to  V , neglecting 7 and the 

servo- ro tor  dynamics, is 

Therefore  7 3 

The pitch attitude gain, k e ,  the lead compen- 

and r - ,  and the velocity gain, k a r e  the free 

The servo-ro tor  dynamics w i l l  be  neglected in 
e V Y  

X X 3 
C 

3 

(6-62) VX( s)  - b3s t b2s2  t b l s  t b 0 
- 4  

0 
s t a s 3  t a s 2  t a s  t a 

3 2 1 v (s )  
X 

C 

where 

= (0.6725 t 19. 7ke76 t 0. 197kvke 2. 375keTg)/c a3 

a = (0. 0152 t 19. 7ke t 2. 375ke76 t 0. 0405ke7g 2 

t 0.5 0 lkvke )/c 

a l  = (0. 1593 t 2. 375ke t 0. 0405ke76 - 10. 796kvke)/c 

a = (0. 0405ke - 1.084k k ) /c  (6-63) 
0 v e  

and 

bg = (0. 197kvke)/c 

b2 = (0.501kvk,)/c 

b l  = (-10. 796kvk,)/c 

bo = (-1.084kvke)/c (6 -64) 
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and 

c = 1 t 19. 7ke78 (6-65) 

In applying the computer program fo r  the Model PI design method, 

the subroutine COEF is wri t ten t o  generate  the coefficients (6-63) and 

(6-64). 

Model PI Design 

-4 Using a pseudo IC weighting factor of 1. 3 X 10 in the Model 

PI and a n  initial choice for the f ree  pa rame te r s  of 

kg = 0. 15 inch/deg 

TC, = 0. 11 sec 

r e +  = 0. 667 s e c  

-1 

-2 
8 

k V = -0.667 deg/fps 

resul ted in final values of 

= 0. 251 inch/deg 
kg 

-1  
T = 0.469 s e c  

T = -0.071 sec 

6 
- 2  

8 

k = -1. G4 deg/fps 
V 

Using these values in equations (6-62) - (6-65) gives the 

approximate closed-loop sys t em t ransfer  function as 

) (  ' 8. 7396 6.2984 
S 

0. 1 

(l ' 0. 0943 )(lf ~ ) [  l t  (1.735) 

- VX( s ) (-0.965) ( 1 t 
- - 

S 

xC (') 

(6 -66) 
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Design fo r  a Four th  Order  Approximation to the FCS 
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The s tep response for  this solution is shown in f igure  6-32 to  b e  ve ry  

close to  that of the model. The damping r a t io  of the oscil latory mode 

is 0 .8 ,  s o  that this design of the fourth order  approximation to  the 

sys tem meets  the design specifications of this section. 

Since the Model P I  design selected such a sma l l  value f a r  78 
it may be satisfactory to  neglect 7- altogether. 6 e 
nated then it won ' t  be necessary  to  include the double lag in the pitch 

attitude feedback path, and the compensation can be  reduced to  

( 1  t 7 os). 

design, except 7 8 . "  0 ,  and including the servo- ro tor  dynamics is 

If 7- can be e l imi-  

The closed-loop sys tem transfer  function for  the Model PI  e 
e 

(6 -67) 

Comparing the oscil latory mode of t ransfer  functions (6-66) and (6-67) 

one s e e s  that neglecting 7 4 .  gives a lower damping ra t io  but st i l l  within 

the specifications. 

of the design f rom reference 52 in figure 6-33, which shows no signifi- 

cant differences. 

specifications of reference 52. 

is 

c onf ig ura t ion). 

e 
The step response of this design is compared to  that 

This Model P I  design meets  the command input design 

The compensation used in the two designs 

summarized in table 6 -3  (figure 6-31) shows the basic  feedback 
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C H A P T E R  7 

ON LINEAR OPTIMAL CONTROL 

General  quadratic functionals appear most  frequently in modern 

control l i t e ra ture  as cost  functionals in optimal control theory. 

main  r eason  for this is that quadratic functionals a r &  one of the few 

types of mathematical  expressions that can give r i s e  to  closed-form 

analytical solutions for a var ie ty  of optimal control problems. Under 

suitable,  well defined and well known, conditions (53) it is possible to  

force  the optimal solution to  be  a l inear  feedback control law. 

s o  called optimal regulator"  problem is one such solution that has 

been proposed and used as a synthesis tool for  designing l inear  feedback 

systems.  

at the point of relating the quadratic cost  functional to  the des i red  closed 

loop sys tem character is t ics .  Rynaski and Whitbeck (26 )  and.others  have 

made important contributions towards closing this gap, but there  is st i l l  

a missing link, that of a logical bas i s  for selecting the s ta te  vector 

weighting mat r ix  in the quadratic functional. Without this l ink,  there  

remains  a l a rge  degree  of a rb i t r a r ines s  in the 

incites substantial c r i t i c i sm of the technique. 

The 

The 

However there  has been a g a p  between theory and application 

optimal solution" that 

This chapter presents  some interesting new developments on the 

theory and application of l inear  optimal control result ing f rom the 

Model P I  theory. By defining the cost  functional a s  
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where the first t e r m  of the integral  is the bas ic  Model PI, one has  a 

logical bas i s  for  selecting the weighting matrix, Q, direct ly  in t e r m s  

of a model. 

based on (7-1) approaches the as the weighting 

on the control effort ,  r ,  approaches zero.  The weighting matrix Q can  

N 

It w i l l  b e  proved in section 7. 2 that the optimal solution 

del  represented  by 
cy 

r ep resen t  a model of equal or lower order  than the system. 

is of lower o rde r ,  the excess sys tem poles approach a Butterworth con- 

figuration as r -+ 0. 

optimal solution matches the model exactly if and only if r = 0. 

7. 2. 2 shows how to  in te rpre t  the output-regulator problem, in which the 

sys tem output var iables  a r e  used in the cost  functional ra ther  than the 

s ta te  vector ,  in t e r m s  of the Model PI concept. 

section 7. 2. 3 that  Kalman' s model-in-the-performance-index (54) in 

a s ta te  regulator f o r m  becomes independent of the s ta te  vector weight- 

ing mat r ix  and is equivalent t o  (?-1)  when the sys t em and model a r e  in 

the phase -variable canonical form. 

If the model 

If the model and sys t em are of the same order  the 

Section 

It w i l l  be  shown in 

Using the Model P I  weighting mat r ix ,  a", in the optimal regulator 

problem resu l t s  in the poles of the model being the ze ros  of root  square  

locus for the optimal solution. 

solution to  the l inear  optimal control synthesis procedure which is p r e -  

sented in section 7. 3. 

example considered in Chapter 6 ,  section 6. 1, is redesigned t o  i l lustrate  

this procedure. 

This fact  l eads  to  a n  interestingly s imple 

The simple pitch damper  flight control sys tem 

A procedure is presented in section 7.4 for  computing a n  equiva- 

lent  Model P I f o r  any quadratic function. 

physical interpretation t o  some of the s t r ic t ly  mathematical  examples 

that have appeared in optimal control theory l i terature .  

of this is a l s o  presented. 

This allows one to  give a 

An example 

The s tandard approach to  the optimal regulator problem w i l l  be  

reviewed in section 7. 1 before presenting the new mater ia l .  

7. 1 The Single Control Optimal Regulator Problem 

Consider the nth order  l inear ,  t ime invariant sys tem given by 
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- k(t)  = F x ( t )  - t g u ( t )  

with initial condition x 
a sca l a r  control var iable  and y(t) is the output vector. 

assumed to  be controllable and observable (53). 

that  the sys tem does not have d i rec t  t ransmiss ion  paths f rom u(t) to  any 

components of y(t), i. e. the corresponding t ransfer  functions have at 

l ea s t  one m o r e  pole than zero.  With these two assumptions it is com- 

pletely general  to  a s sume  that the state equation (7-2) is in the canoni- 

cal  phase-variable form*'., i. e. 

where x( t )  is a n  ( n  X 1) s ta te  vector ,  u(t) is - -0 
The sys tem is 

Also it is assumed 

.a, 

The cost  functional is defined as 

( 7 - 6 )  

where Q is a positive semi-definite symmetr ic  matrix and r is a 

positive sca la r .  

The optimal regulator problem is to  find the control dt) ,  that 

takes the s ta te  f rom the initial condition, x to  the origin, - 0,  along -0' 
the t ra jec tory  that minimizes the cost  functional ( 7 - 6 ) .  

solution (53) is 

The well known 

4. -4- 

The elements of the r o w s  of H in this case  a r e  simply the numerator 
coefficients of the respect ive t ransfer  functions. 

24 1 



u(t) = -k'x(t) -- (7-7) 

where 

-1 r g'P (7-8) 

and P is a positive definite symmetr ic  matrix satisfying the algebraic  

equation 

The I'  optimal regulator"  is then given by 

- x(t)  = [ F  - g k ' ]  - x(t)  

= F x(t)  or - 

where 

- - 
or F 

(7-10) 

(7-11) 

and the output is given by (7-3). This is sometimes r e fe r r ed  to  a s  the 

"output-regulator problem" s ince the output vector is used in the cost  

functional. If the s ta te  vector is used in the cos t  functional it is called 

the s ta te-regulator  problem". The solution to  the s ta te-regulator  

problem is obtained f r o m  the above by setting H = I .  

The open- and closed-loop sys tems a r e  depicted in figure 7-1 by 

vector -mat r  ix block diagrams.  

fac t  that this is a regulator type problem since there  is no input to  the 

system. 

because there  is no input-output t ransfer .  

the ze ros  of the u(t) t o y ( t )  t ransfer  functions, but u(t) is s t r ic t ly  a 

control variable not a n  external  input. 

only changes the charac te r i s t ic  equation, i. e.  poles, of the regulator.  

These d iagrams help emphasize the 

One can  not talk about closed-loop ze ros  for this sys tem 

The H mat r ix  represents  

The optimal control l aw  (7-7) 
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X Initial C ond itioq -0 

U 

(a)  Open-Loop System 

Initial Condition 

I 

h 

I 
I d 

(b)  Closed-Loop Optimal Regulator 

F igu re  7-1 Block Diagrams of Open- and Closed-Loop 
Systems for  the Optimal Regulator Problem 
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The optimal regulator problem has been suggested as a procedure 

for designing l inear  feedback control systems.  

rea l ize  that it is only a procedure fo r  selecting the closed-loop charac-  

te r i s t ic  equation. 

a r b i t r a r y  weighting matrix, Q, and the sca l a r  r as indicated in equations 

(7-8) and (7-9). 

solution is outline below. 

However one should 

The solution for  the feedback gains depends on the 

The synthesis procedure using the optimal regulator 

1. Select a weighting mat r ix  Q and the sca la r  r; typically 

Q is taken to  be diagonal. 

Compute the feedback gain vector ,  - k,  for  this 

choice of Q and r f r o m  equations (7-8) and (7-9) or 

P can  be computed as the s teady-state  solution of 

the ma t r ix  R icatt i  equation. 

Compare the closed-loop sys tem using these feedback 

gains to  the design specifications. 

2. 

3. 

4. Repeat steps 1 through 3 until the specifications are  

met.  

There  has  not been any general  guide in the past  for  choosing 

Q and r ,  which meant that  severa l  i terations of t r ia l  and e r r o r  might 

be necessary.  Chang (55) showed that the weighting fac tors  of J ,  for  

the sca la r  output ca se ,  a r e  re la ted to the closed-loop poles of the opti- 

mum system and its adjoint by a root square  locus. Rynaski and Whit- 

beck (26)  extended Chang' s work to  the multivariable case  and obtained 

some very  interesting resu l t s  with root  square locus. 

in general  the Q and R". ma t r i ces  a r e  related to  the closed-loop poles 

by a root square locus. 

the root square locus which is difficult to use a s  a guide to  selecting Q 

except for  the sca l a r  output case.  The difficulty is well i l lustrated by 

a n  example of reference 26 in which Q is a 

They showed that 
4- 

However their  t reatment  resul ted in a fo rm for  

2 X 2 diagonal mat r ix ,  

;I; 

R is the multi-control weighting mat r ix  which is the counter p a r t  of 
r in equation (7-6). 
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(7-12) 

and the control is a sca l a r ,  i. e. R is  a sca l a r ,  r. Their  solution w a s  

a root  square  locus with r as  the gain, and the numerator w a s  another 

root  square  locus with the r a t io  ( q  /q ) as the gain. In other words, one 1 2  
would have to  use a root  square  locus to  obtain the ze ros  of another root  

square  locus. 

elements.  

niques were  developed t o  avoid. 

-1  

It becomes increasingly more  difficult as Q has m o r e  

This is the type of complexity which analytical design tech- 

Two ways in which a model can be included in the cost  functional 

that  have been considered in the l i t e ra ture  a r e  nodel-following method 

and Kalman' s model-in-the-performance-index method (both a r e  t reated 

in re ference  2 0 ) .  However in each of these one is s t i l l  l e f t  with the task 

of selecting Q and r by a t r ia l  and e r r o r  procedure s imi la r  to  that out- 

lined above. The Model PI concept to be considered in the next section 

provides a d i rec t  method for selecting the s ta te  vector weighting matrix 

a p r i o r i  based on a model, which then leaves r as  the only a r b i t r a r y  

quantity in the cost  functional. 

7. 2 The Optimal Regulator V i a  the Model PI 

The nth order  sys tem given by (7-2) and (7-3) can be writ ten 

equivalently as 

Z'(t) Zi = u(t) (7-  13) - -  
Iy 

y( t )  = HZ(t) - (7 -  14) 

with initial condition Z where -0 ' 

- ii'(t) = [x'(t) J n ) ( t ) ]  = [x'(t) ; -z'(t)a i- u( t ) ]  (7-15) 

I - 8' - - 1 a' I 1 1  (7-  16) 

H = [ H  i - 0 1  (7-17) 
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Three  important differences should 

sys tems considered h e r e  and in Chapter 3. 

b e  pointed out between the 

loop sys tem ze ros  and w a s ,  in general ,  a function of the f r  

rs. This m ptimum" sys tem in this 

will be independent of x+. 
cal  concepts of It optimal control" ve r sus  I' parameter optimization" . 
That i s ,  the optimization process  he re  is to  select a control l a w  fo r  u(t); 

whereas ,  in Chapter 3 it was t o  select  f r e e  design parameters after the 

engineer chose the feedback configuration. 

The third difference is in the bas ic  theoreti-  

It is assumed he re  that the objective of the optimal regulator 

problem is somewhat different than that stated in section 7. 1 (page 241). 

Rather than seeking the control u(t) that mere ly  takes the s ta te  f rom 

x to  0 along the t ra jectory that minimizes  a n  a r b i t r a r y  cost  functional, -0 - 
i t  is required that the minimum value of the cost  functional correspond 

to  a t ra jectory that approximates the t ra jec tory  of a preselected model. 

7. 2. 1 State-Regulator Problem 

The geometrical  representat ion of l inear  autonomous sys t ems ,  

intorduced in Chapter 3 ,  section 3. 1. I ,  can be used to  define a n  I t h  

order  model by its charac te r i s t ic  plane 

21 (t)G = 0 ( 7 -  18) -m - 

and a n  initial condition vector E , where 
-mO 

is a n  (I X 1) vector whose elements a r e  the coefficients of the 

del '  s charac te r i s t ic  equation. The m e l ' s  t ime response t ra jec-  

tory l ies  within the - &-plane in the (I t 1) mensional space. Since the 
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s y s t e m ' s  t ra jectory would in general  be defined in the (n  t 1) dimen- 

sional space only its projection into the mode l ' s  extende 

can  be considered f o r  approximating the m o d e l ' s  t ra jectory.  

is  the projection of the s y s t e m ' s  t ra jectory into (I t 1)-space then 

s ta te  space,  

If 2(t) - 

(7-20) 

the mode l ' s  s ta te  vector initial condition, x , can be  chosen to  

coincide with the f irst  I elements of the sys tem'  s initial condition 

vector. Then, if it is possible to find a control law for  u(t) ,  such that 

the projection of the s y s t e m ' s  t ra jectory,  - 2(t), l i e s  within the mode l ' s  

charac te r i s t ic  plane for all t ime grea te r  than ze ro ,  - S(t) must  coincide 

with 2 . 
This s ta tement  can be proved by an argument s imi la r  to  that used in 

Chapter 3 ,  section 3 .  2. 1. Since only the I' optimal'' control l a w  is of 

interest  here ,  this general  proof w i l l  not be presented. Instead, it w i l l  

b e  shown subsequently that the dominant poles of the optimal regulator 

approach the model poles in a limiting case ,  which is comparable to 

making - 2(t) l ie  within the mode l ' s  charac te r i s t ic  plane, - &-plane. 

-mO 

( t)  except for possibly a n  a rb i t ra r i ly  smal l  region around % 
-mO -m 

Following the logic of Chapter 3 ,  section 3 .  2. 1, it is reasonable 

to  expect that if the projection of the s y s t e m ' s  t ra jec tory  into the (I t 1)-  

space could be made to  l ie close 

then it would be close to the mode l ' s  trajectory.  

for  approximating the m o d e l ' s  t ra jectory by that of the sys tem can be the 

minimization of the s a m e  generalized measu re  of the distance between 

the projection of the s y s t e m ' s  t ra jectory and the model ' s  charac te r i s t ic  

plane that was used in defining the Model PI. It w a s  shown in Chapter 3 

that  the instantaneous distance f rom - %(t)  to  the - &-plane is the s a m e  as the 

distance f rom - %(t) t o  the model ' s  extended charac te r i s t ic  plane, E-plane, 

in ( n  t 1)-space where 

to  the - &-plane by proper selection of u( t ) ,  

Therefore ,  a c r i te r ion  

- &' = [ti' - I -  ! 0 ' 1  (7-21) 

It follows that ( s e e  equations ( 3 - 3 3 )  t o  ( 3 - 3 6 ) )  that  minimizing 

the quadratic functional 
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( 7 - 2 2 )  

where 6 is a n  ( n  t 1) X ( n  t 1) ma t r ix  defined as 

( 7 - 2 3 )  

tends to  force the s y s t e m ' s  t ra jec tory  to approximate the model'  s 

t ra jectory in (1 t 1)-space. 

The optimal regulator problem includes a requirement  that the 

control effort not be  excessive; s o  that the cost  functional is taken to  

be (7-1) which is repeated he re  

where 5 is given by ( i -23) .  

mi se  between attempting to  force  the projection of the s y s t e m ' s  tra- 

jectory to l ie  in the m o d e l ' s  charac te r i s t ic  plane and minimizing the 

control effort. Note that the only a r b i t r a r y  constant is the weighting 

on the control effort ,  r. 

One can see  f rom its definition ('i-23) that Q is always positive semi -  

definite symmetr ic  matrix. 

This cost  functional represents  a compro- 

- 
Selecting a model completely specifies Q. 

N 

The optimal control l a w  fo r  this formulation is the s a m e  as in 

section 7. 1 if the model is of lower order  than the sys tem,  but some-  

what different if the sys tem and model a r e  of the same order.  

the case  where the model is of lower order  than the sys t em (1 < n) ,  

then at  leas t  the last element  of - i2 must  be zero ,  and 

Consider 

(7-24) 

where Q is a n  n X n matrix given by 
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- O' 1 
(7-25) 

and 0 is a n  ( n  - 1 - 1) X 1 null vector.  

functional becomes exactly the s tandard form (7-6) for  the case  where 

H = I. 

Q defined by (7-25). 

Using (7-24) in (7 -1 )  the cost  - 

The solution is given by equations (7-7) - (7-9) with H =  I and 

An al ternate  f o r m  of the solution in the Laplace t ransform 

domain, called the " r o o t  square  locust t  (26 ,  55) provides a n  interest-  

ing resul t .  
>$ 

The minimum principle is used to  establish the necessary  

condition for  the extrema1 control law.  

problem is 

The Hamiltonian for this 

so  that the necessary  conditions a r e  

together with equation (7-2). 

and rearranging,  gives 

Taking the Laplace t ransform of these 

:: 
The procedure for determining the optimal control by Pontryagin' s 
Maximum (minimum) Principle  is found in severa l  re fe rences ,  e. g. 
Athans and Fa lb  (53). 
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I 
I 
I g' r 1  

(7-29) 

which descr ibes  the optimal regulator and its adjoint system. 

closed-loop poles of the optimal sys tem and its adjoint a r e  given by the 

determinant of the coefficient matrix of (7-29). 

(26) show that this determinant  can be reduced to  

The 

Rynaski and Whitbeck 

(7-30) 

where 

The poles of the open-loop sys tem and adjoint sys t em a r e  given by D(s)  

= 0 and D(-s) = 0 respectively.  The expression 

r -1 g ' [ - Is  - F ' ] - l Q  [ I s  - F]-'g = -1 (7-32) 

defines the root  square  locus of the closed-loop poles of the optimal 

regulator and its adjoint as a function of r -1 . 
Since F is in the phase-variable f o r m  (7-4) and Q is taken to  

be the special fo rm (7-25),  it is possible t o  reduce (7-32) to a very  

simple form. Define a vector u( s) as - 
- u(s)  = Adj [Is - F ]  g (7-33) 

where Adj [ ] means the adjoint of [ 0 1 .  
ted by considering the f i r s t  equation in (7-29), assuming ~ ( 0 )  

The vector u(s )  can  be evalua- - 
= 0, 

or  
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- 4 s )  -1 
c x(s) = [Is - F ]  ~ u ( s )  = - 4 s )  

= s u ( s )  

D( s) :( s )  = s u(s)  (7- 35a) 
2 

n- 1 D( i) x ( ~ -  ( s )  = s u(s)  

or collecting these into vector notation 

2 D ( s ) x ' ( s )  = [ 1 s s - - - a  s n - l ]  u(s)  

Comparing (7-35b) to  (7-34) one sees  that 

s 2 r . .  . s n - l ]  - al (s )  = [ 1 s 

(7-35b) 

(7-36) 

Similarly one can  show that 

g 'Adj [-Is - F' ] = - crI(-s) (7-37) 

Using the definitions (7-31) and (7-33) in the expression for the root 

square  locus ( i - 3 2 )  gives 

(7-38) 

Finally using the definition of Q, (7-25) in the above gives 
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where 

The denominator of the above expression is the product of 

open-loop sys tem and adjoint sys tem charac te r i s t ic  polynomials, 

( 7 -40) 

the 

i. e. 

the product of the open-loop poles. 

optimal regulator a r e  the open-loop poles. 

would expect because as the weighting on the control effort  in the cost  

functional gets very  l a rge  it is bet ter  t o  use  no control and operate 

ope n-1 oop. 

If K --t 0 ( r  + M)) the poles of the 

This is the solution one 

The numerator of this expression is the product of the root  

square  locus gain and the charac te r i s t ic  polynomials of the model and 

its adjoint. 

regulator and its adjoint are  the poles of the model and its adjoint. If 

K --t 00 ( r  --t 0) ,  I of the poles of the optimal regulator and of its adjoint 

approach the respect ive poles of the model and its adjoint, i. e. the z e r o s  

of the root square  locus (7 -39) .  

poles in the root square  locus expression. 

g o  to  infinity as K --t 00 along asymptotes that branch out at angles of 

That is, the ze ros  of the root  square  locus for  the optimal 

Altogether t he re  are 21 ze ros  and 2n 

The remaining 2(n - 1 )  poles 

imately equidistant 



f rom the origin, thus approaching a Butterworth configuration (poles 

symmetr ical ly  a r ranged  on a semic i rc le  in the LHP whose center is at 

the origin) as  they go to  infinity. 

regulator are  then those that approach the mode l ' s  poles ar r -+ 0. 

shows that the optimal solution based  on (7-1) approaches the model 

represented  by 6 (7-23) a s  the weighting on the control effort in (7-1) 

approaches ze ro ,  for models of lower order  than the system. 

The dominant poles of the optimal 

This 

Now consider the case where the model and sys tem a r e  of the 

s a m e  order  (1 = n). In this case  there  are no z e r o  elements in - i2 s o  that 

(7-41) 

Then the cost  functional ( 7 -  1)  is equivalent to 

J = -  2 c" x ' ( t )  (y - c a )  t u ( t ) )  J 0 

( 7 -42) 

The Hamiltonian corresponding to  (7 -42)  with the constraint  equation 

(7-2) is 

Using the minimum principle, the necessary  conditions for a n  extrema1 

control l a w  are 
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( 7 -44) 

( 7 -45) 

together with equation (7-2) ,  where  p is  a positive sca l a r  defined as 

1 
p = r t -  2 

II E II 
( 7  -46) 

The control law is then 

(g-5) ' 
u(t) = g'W -I- -(t)) (7-47) IId - 
It is easily shown that this extrema1 control gives a local minimum 

value o f % .  Since 

= p > o  
a 2  
au2(t j  

(7-48) 

a second order  variation in u(t) f rom (7-47)would cause a n  increase in 

w. 
Using the optimal control l aw  (7-47) in equations ( 7 - 2 )  and 

(7-44) resu l t s  in 

-1 - - G(t) = Fx(t) - - g p  g'x( t )  

- A ( t )  = - F ' X ( t )  - - Qz( t )  
- 

where 

( 7 -49) 

(7-50) 

(7-51) 
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It is  easi ly  shown by substitution into (7-49) and (7-50) that 

- h(t) = Px( t )  - 

where 

algebraic  matrix equation 

is a positive definite symmetr ix  matrix that satisfies the 

Using (7-53) in (7-47) gives the optimal control l aw  to  be 

u(t) = -k'x(t) 
L- 

where 

(7-52) 

(7-53) 

( 7  -54) 

( 7-55) 

(7  -56) 

The optimal solution for  the case  in which the model and sys tem 

are of the same order  is seen ,  f r o m  the above r e su l t s ,  t o  be  somewhat 

different  f r o m  the usual solution (compare the above to  equations (7-7) - 

(7-9)), although very s imi l a r  in form.  

matching exists when the model and sys tem a r e  of the same  order.  It 

will now be shown that the optimal control l aw  given by (7-54) - (7-56) 

will produce exact model matching if and only if r = 0": 

Assume that r = 0, then (7-56) becomes 

The possibility of exact model 

.t* 

From the definitions of a and F, (7-52) and (7-51) respectively,  with 

* I- 
An exception is the special ,  t r ivial  case in which the open-loop sys tem 

i. e. matches the model exactly, 
u(t) = 0. 

= E, and the optimal control is 
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r = 0, it follows that 6 = 0 and 

(7-58) 

which is the coefficient mat r ix  of the mode?. 

to  

Equation (7-54) reduces 

s o  that 

P = o  (7-60) 

is a solution. 

can only have one positive semi-definite solution , so  that (7-60) is the 

solution to  use in the optimal feedback gain equation (7-57), i. e. 

It follows f r o m  P o t t e r ' s  work (56) that equation (7-59) 
<: 

and the optimal control is 

u(t) = (cy - 2 ) ' x ( t )  (7-62) 

Using (7-62) in (7-2) resu l t s  in the optimal regulator s ta te  equation 

(7-63) 

where 

96 
Since only asymptotically stable models a r e  considered he re ,  i? is 
a stable ma t r ix  s o  that P o t t e r ' s  regular i ty  condition is me t  in equa- 
tion (7-59). 
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The closed-loop coefficient ma t r ix  (7-64) is identically that of the model, 

s o  that the optimal regulator based on Q matches the model represented 

by Q exactly if r = 0. 

.v 

cr 

It w i l l  be  shown by the root  square locus technique, that the 

This w i l l  optimal solution matches the model exactly only if r = 0. 

a l s o  show that if exact  model matching is not wanted, i. e. r # 0, the 

optimal regulator at least approaches the model as r approaches zero.  

Taking the Laplace t ransform of the necessary  condition (7-2) , 
(7-44) and (7-45) and rearranging gives 

(7  -65) 

which descr ibes  the optimal regulator and its adjoint system. Following 

the procedure suggested by Rynaski and Whitbeck (26) one can obtain the 

expression 

as the root  square locus equation in this case.  

defined vector - u ( s ) ,  equation ( 7 - 3 3 ) ,  the above can be reduced to  

Using the previously 
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which can be  fur ther  reduced using (7-36) to  

f sn)(a -k CvlS 4- a 2 s  2 t - * * t s )  n t ( a o - "  s t a  s 2 - * * *  - - 0  

( 7 -68) 
0 1 2 

The poles of the optimal regulator (and its adjoint) given by (7-68) can 

match  those of the model (and its adjoint) only if the first t e r m  of (7-68) 

is zero.  The open-loop sys tem charac te r i s t ic  polynomial, D ( s ) ,  is 

z e r o  only at the open-loop poles, i. e. u(t) = 0, which is a t r ivial  solution. 

Then the first term is z e r o  only if r = 0 (excluding the t r ivial  solution), 

s o  that the optimal regulator based on 6 matches the model represented 

by 6 exactly only if r = 0. 

Equation (7-68) can a l s o  be  writ ten in the root square  locus f o r m  

- a l s t a s 2 - * * * * s  n ) ( a o t a  s t a 2 s 2 t . * * + s n )  
( a O  2 1 

(7-69) 
where K is defined by (7-40). 

adjoint) represented by a" in the cos t  functional (7-1) are the ze ros  of 

the root  square  locus for  the optimal regulator (and its adjoint). 

K + 00 ( r  + 0) the poles of the ~ optimal regulator and its adjoint approach 

the zeros  of (7-69), and thus, the poles of the model and its adjoint 

respectively. 

exactly if r = 0,  but it approaches the model in a well defined manner  

as r + 0. 

Therefore  the poles of the model (and its 

As 

The optimal regulator not only matches the model 

CI 

The use of cos t  functional (7-1) in which Q defined by (7-23), 

represents  a specific model,  has  thus been justified f o r  models of 

equal or  lower order  than the system. The root  square  locus expres-  

s ion (7-39) is valid for  I I n and can be wri t ten down direct ly  f r o m  the 

model and open-loop sys tem character is t ics .  

although the optimal control l a w s  a r e  somewhat different for  I C n and 

I = n, the root square  loc i  a r e  of identical form.  

It is interesting that 
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7. 2. 2 Output-Regulator Problem 

F r o m  the approach taken here ,  the output-regulator problem is 

no longer a meaningful problem. In fact ,  it complicates and r e s t r i c t s  

the selection of Q to  represent  a specific model. It w a s  pointed out in 

section 7. 1 that the optimal regulator problem is only a procedure fo r  

selecting the closed-loop charac te r i s t ic  equation of a system. 

t rue  that the output mat r ix ,  H, does affect the optimal solution when 

treating the problem as a n  output-regulator. 

ge t  the same  solution using the s ta te-regulator  approach by selecting 

the appropriate  Q. Since Q has been a n  a r b i t r a r y  matrix in previous 

t reatments  anyway it s eems  somewhat superfluous to  define the output- 

regulator problem separately f rom the s ta te-regulator  problem. As 

long as the sys tem is observable f rom the output vector ,  y(t) and the 

closed-loop system is stable,  t h e n y ( t )  will g o  to  z e r o  a s  c x(t) + - 0. The 

only question is the manner in which - x(t) -+. 0, which can  be established 

It is 

However one can always 

conveniently using the Model PI approach suggested in the previous 

section. 

However, since the output regulator is often considered in the 

l i t e ra ture ,  it is of interest  to  show how to intepret  the cost  functional 

in t e r m s  of the Model PI concept for such cases .  The cost  functional 

is (7-6) which is repeated he re  

The weighting ma t r ix ,  Q, is assumed he re  to be of the special  f o r m  

Q = 9%’ 

F o r  the case  in which Q is a general ,  symmetr ic ,  positive semi -  

definite mat r ix ,  one would have to  use the procedure described in 

section 7.4. The cost  function can be writ ten as 

(7-70) 

(7-71) 
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where  - Z(t) and a r e  defined by (7-15) and (7-17) respectively. Then 

Define a vector d in this ca se  t o  be - 

and define 

J =  2 I1 L! 11 
- 2 

Minimizing J is equivalent t o  minimizing J because 11 - GI1 

pos itive sca la r .  Then 

is jus t  a 

where 

(7-72) 

(7-73) 

(7-74) 

(7-75) 

(7-76) 

(7-77) 

The problem has thus been t ransformed into the one considered in 

section 7. 2. 1, s o  that the solution and root square  locus techniques 

discus sed previously can  b e  applied. 

If one wishes t o  formulate an  output-regulator problem, then 

the definition (7-73) can be  used to  interpret  the weighting matrix in 

t e r m s  of a model. 

In section 7. 2. 1, - d w a s  f r e e  to  b e  selected,  but here ,  only g is f ree .  

H is a specified matrix whose elements a r e  the ,numerator polynomial 

coefficients of the open-loop u(s)  t o  y ( s )  t ransfer  functions, i. e. the ith 

row of H, k ,  is 

But now there  is a constraint  on selecting the model. 

cy 

- h .  
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L 

h. = [bio b b i 2 - - * b  0 O ' . . O ]  (7-78) 
-1 il  im 

fo r  the ith output var iable  t ransfer  function, yi(s)/u(s),  with numerator 

polynomial 

(7-79) 
m m-1 t * * . t b  s t biO i l  S im-1 (s) = bims t b 

The relationship (7-73) puts a n  interesting constraint  on the model 

selected. The m o d e l ' s  charac te r i s t ic  equation, defined by - 5,  is a 

weighted sume of the numerator  polynomials of the output var iable  

t ransfer  functions, with the elements of qbeing the weighting fac tors ,  

i. e. 

where j i s  the number of output variables. 

in a s imple example. 

This point is easier to  see 

Consider a n  open-loop sys tem with two output variables given by 

b12s2 t b 11 s t b10 

3 
- Y 1 b )  . - -  

0 
s t a2s2 t a s t a 1 4 s) 

- -  Y,(S) - b21s b20 

s 3  t a s 2  t a s  + a  4 s )  2 1 0 

which can be  represented in canonical, phase-variable,  f o r m  as 

-a 

(7-81) 

(7-82) 
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b l l  '"1 x(t) = Hx(t) - 
0 

b21 

(7-83) 

If the cost  functional is 

or  

(7  -84) 

(7-85) 

(7-86) 

The coefficients for  the mode l ' s  charac te r i s t ic  equation is given by 

(7-86) in this example s o  that for any q 

corresponding model and root  square  locus directly. 

ly  res t r ic ted  in the models that could be represented  by the weighting 

matrix in this example,  with only q and q free to  be  chosen. 

and q 1 2 one can  wr i te  down the 

But one is seve re -  

1 2 
Two final observations can b e  made. First, the order  of the 

model defined by (7-73) is the order  of the highest o rder  numerator  

polynomial among the y.(s)/u( s) t ransfer  functions. Secondly, if only 
1 
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one output var iable  is included in the cost  functional, i. e. Q is a sca l a r ,  

then the z e r o s  of the open-loop control to  output t ransfer  function a r e  

the poles of the model defined by (7-73),  and therefore  are  ze ros  of 

the optimal output-regulator root  square locus. 

the dominant poles of optimal solution will approach the ze ros  of the 

open-1 oop sys  tem. 

A s  r + 0 in (7-76) 

7. 2. 3 Relationship t o  Kalman' s I t  Model-in-the-Performance-Index" 

Kalman (54) suggested a method for  including the coefficient 

mat r ix  of a model in a quadratic cost  functional in such a way as t o  

t ry  to force  the derivative of the s y s t e m ' s  output vector t o  match the 

derivative of the m o d e l ' s  s ta te  vector. This technique, which is 

r e f e r r e d  to  as I' model-in-the-performance-index'' ,- proceeds a s  

follows. 

A model of the s a m e  order  as  the system output vector ,  where 

the sys tem is given by equations (7-2) and (7-3) ,  is defined a s  

(7-87) 2 ( t )  = Fmzm(t) -m 

Then the cost  functional is taken to  be 

If the control u(t) forces  y(t) - Fmy(t) t o  be  z e r o  then the sys tem output 

r a t e  will match the derivative of the model ' s  s ta te  vector. This is a n  

I' output-regulator' '  type of formulation. Only the s ta te-regulator"  

type of formulation w i l l  be  considered here ,  leaving the t reatment  of the 

'' output-regulator" type for  a future effort. The 'I state-regulator ' '  

f o r m  is obtained f rom (7-88) by defining 

H = [ I  01 ( 7 -89) 

where I is a n  I X P identity ma t r ix  and 0 is a n  I '  X ( n  - I )  null matrix 

s o  that (7-3) becomes 
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It will be shown in this c a s e  that if the sys tem and model are in the 

canonical phase-variable f o r m ,  then (7-88) is independent of Q, and 

indeed, becomes equivalent to  the cost  functional (7-1) based on the 

Model PI concept. 

Assume that the model is Bth order  and its coefficient matrix 

is of the form 

F =  m (7-91) 

The variables i ( t )  and y(t) can be  eliminated f r o m  (7-88) by 

using (7-2) and (7-3) t o  give 

F i r s t  consider the case  in which the model is of lower order  

than the system (1 < n). In that case ,  at l ea s t  the l a s t  column of €3, 

(7-89),  is a z e r o v e c t o r  s o  that H g =  - 0 in (7-92). 

F H can be  reduced as followsl': 

The t e r m s  HF and 
.I. 

m 

.I. e,- 

The dimensions of the various identity ma t r i ces  are indicated by 
subscr ipts  he re  to  avoid confusion, and the 0 ' s  a r e  appropriately 
dimensioned null mat r ices .  
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(7  -94) 

Then 

where & is defined by (7-19). 

(7-92) reduces to  

The first  t e r m  in the cost  functional - 

where q is the element in the last row and column of Q, and Z( t )  and 8 8  - 
- l2 are  defined by equations (7-15) and (7-21) respectively. Then the 

cost  functional (7-92) can be  wri t ten as 

(7-97) 

Notice that the cost  functional is completely independent of Q because 

only one of the two s c a l a r s  q 

the relative weighting of the two quadratic te rms .  

b e  taken to  be  

and r in (7-97) is necessary  to  establish 11 
The sca l a r  qI8 can 
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1 

without loss  of generali ty since r has not been specified. 

in (7-97) resu l t s  in the Model PI form,  (7-1), i. e. 

Using (7-98) 

IC. 

where Q is given by (7-23). 
Now consider the case in which the model and system a r e  of 

In that case H =  I, s o  that the f i r s t  t e r m  in the same order  (1 = n). 

the integrand of (7-92) becomes 

(7-99) 

Again take qdl to  be (7-98). Comparing (7-99) to  (7-41) one sees  that 

(7- 100) 

for any Q as long a s  qdl is given by (7-98). 
reduces to  (7-1) for models of the same  order  a s  the system. 

This means that (7-92) a l s o  

Therefore,  if the sys tem and model are in the canonical phase- 

var iable  form,  the (I model - in-the -performance -index" cos t  functional 

in s ta te-regulator  fo rm is completely independent of the Q mat r ix  and is 

equivalent to the Model PI cost  functional. 
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7. 3 Feedback Control System Synthesis by Root Square Locus 

The cos t  functional (7-1) based on the Model PI concept resul ted 

in the simple f o r m  of the root square  locus for  the optimal regulator 

and its adjoint (7-39),  that  provided a theoretical  justification for  the 

cos t  functional. In this section, a synthesis procedure based on this 

s imple root square  locus f o r m  is presented. The procedure provides 

a d i r ec t  solution t o  the optimal regulator problem as a function of the 

control weighting factor ,  r ,  which can be obtained graphically f r o m  one 
root  square  locus diagram using standard root locus techniques. A 

simple flight control sys tem design example is used t o  i l lustrate  the 

procedure. 

Using a cost  functional of the form (7-1) res-ults in the optimal 

closed-loop sys tem (and its adjoint) having poles given by the root  

square locus (7-39) , repeated below, 

= - 1  

2 
K (Qo -CYIS t CY S 2 

2 n (ao - a l s  t a s - * -  * f s )(ao t a l s  t a s2  t - 0 .  t sn) 2 2 

(7-39) 

2 - 1  for I I n, and K = ( r  IIlkII ) 

(optimal regulator) charac te r i s t ic  equation is 

. The corresponding closed-loop sys tem 

where .or is optimal regulator coefficient vector given b y  

= a t k  - - a -or 

(7-  10 1) 

( 7 -  102) 

- a is the open-loop sys tem coefficient vector and - k is the optimal feed- 

back gain vector. 

computed, which can be easily done f rom the root  square locus (7-39) 

and equation (7-102). The simple fo rm of (7-39)  allows one to  wri te  

it down immediately f rom the system and model coefficient vectors ,  

- a and - cu respectively. 

The optimal regulator problem is solved once k is 

Standard root  locus techniques are used to  plot 

26 7 



the root  square locus. 

optimal closed-loop poles f r o m  the locus and f o r m  a 

of the poles. Once a 

F o r  a specific value of K one can obtain the 

f r o m  the product -or 
is known, - k is easi ly  computed f rom (7-102). -or 

Note that this provides a s imple,  a lmost  tr ivial ,  graphical 

technique for solving the simgle-control,  l inear ,  optimal regulator 

problem for  any order  sys tem and for  models of equal or lower order.  

This can be  done quickly by hand, and requi res  only a knowledge of 

s tandard root locus techniques. 

This technique can  be  used to  synthesize feedback control sys terns 

to  mee t  engineering specifications given as des i red  closed-loop pole loca-  

tions in the s -plane. 

the design examples of Chapter 6 are  examples of such engineering 

specifications. 

as follows: 

The a i r c ra f t  handling qualities requirements  in 

The synthesis procedure using this approach  would be 

1. P lo t  the poles of the open-loop sys tem (the plant) and of 

its adjoint, i. e. the denominator of (7-39). 

2. Select ze ros  for  the root  square  locus (7-39) that would 

tend to  give a locus going through the des i red  location 

for the closed-loop sys tem poles. 

es tabl ish the model and correspondingly the Q matrix. 

Draw the root square locus with ( r  11 - fi 11 ) 

locus gain. 

gives sat isfactory closed-loop poles, then calculate the 

corresponding gain vector ,  k. 

These ze ros  then 
.c. 

-1 3. as the root  

If some location on the root square  locus 

4. If this root  square  locus doesn'  t give any satisfactory 

closed-loop pole locations then repeat with a different 

set of ze ros ,  i. e. a new Q matrix. The first t r y  

should provide a good guide for  selecting a new set of 

zeros .  

- 

5. Or if the gain vector 

a pract ical  implementation standpoint, repea t  with a 

new set of zeros .  

has some elements too l a r g e  f r o m  
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An example is presented subsequently to  i l lustrate the procedure. 

At this point one might logically a sk ,  why go  through the immedi- 

ate s tep of drawing a root square  locus? Why not jus t  pick the des i red  

closed-loop pole locations in the s-plane,  form the closed-loop coeffi- 

cient vec tor ,  then compute - k f r o m  a n  expression l ike (7-102)? Actually, 

with low order  sys tems,  one might be able to do jus t  that and obtain a 

sat isfactory design with reasonable levels of control effort. 

problem with that approach in general  is that the designer must  select  

- all of the pole locations. 

cult to se lec t  all the poles in this a r b i t r a r y  fashion and still maintain 

reasonable levels of control effort. 

ve ry  useful guide in this respect.  

the des i red  dominant modes,  by using a low order  model in (7-39),  and 

the poles of the remaining modes a r e  known to  approach a Butterworth 

configuration in a w e l l  defined manner. 

gain is inversely proportional to  the control effort weighting factor in 

the cost  functional, one can use the root square locus gain a s  a relative 

measu re  of the control effort required along the locus. 

se lec ts  pole locations for the higher order  modes in a Butterworth con- 

figuration, or some other configuration known to  give well behaved 

charac te r i s t ics ,  the feedback gains may  be  unnecessarily high causing 

excessive control effort. 

judge the trade between obtaining the des i red  dominant character is t ics  

and excessive control effort. The importance of the s imple root  locus 

f o r m  result ing f rom the Model P I  concept becomes apparent  here.  

the designer had to  use severa l  root  square  loc i  jus t  t o  obtain the ze ros  

of the final root  square  locus,  as in reference 26, the technique may be 

of questionable value. 

The 

F o r  high order  sys tems it may be very  diffi- 

The root  square locus provides a 

The designer only needs to select  

Since the root square locus 

If one a rb i t ra r i ly  

By using the root  square locus one can quickly 

If 

7. 3. 1 Design of a Pi tch Damper for the X-15 Aircraf t  by 
Root Square Locus 

The simplified pitch damper  for the X-15 a i r c ra f t  considered 

in Chapter 6 section 6. 1, w i l l  be redesigned to  the s a m e  specification 

using root square locus. A block d iagram of the open-loop system is 

shown in figure 7-2. 
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A ir c r  aft Dynamics 

A et ua t or 

Command 
Signal 

F igure  7 - 2  Block Diagram of Open-Loop System for  
Root Square Locus Design Example 

The open-loop t ransfer  functions of servo-command, 6h t o  
C 

angle of attack, - a, and pitch r a t e ,  q ,  a r e  (data f r o m  section 6. 1) 

4 s )  - - -6. 67(0.  0 3 7  s t 12. 2) 
6h (‘1 ( s  t 6 . 6 7 ) ( s 2  t 0 . 4 5 5 s  t 17. 1 )  

C 

( 7 -  103) 

q(s) = -6.67( 12. 2 s t 2. 76) 
( s )  ( s  t 6. 6 7 ) ( s 2  t 0 .455  s t 17. 1) 

C 

The design specifications for  this example a r e  t o  obtain dominant second 

order  poles of the closed-loop sys t em lying within the Sat isfactory 

handling qualities region as indicated in f igure 6-1. 

The root  square  locus equation for this example can  be writ ten 

direct ly  f r o m  ( 7 - 1 0 3 ) ,  

270  



2 
(-s t 6. 6 7 ) ( s 2  - 0 . 4 5 5 s  t 17. l ) ( s  t 6. 67 ) ( s  t 0 . 4 5 5 s  t 17. 1) 

( 7 -  104) 

where the model poles,  i. e. the ze ros  of (7 -104) ,  are left  a r b i t r a r y  for 

the moment. 

a r e  plotted as x' on f igure 7-3. which includes the handling qualities 

c r i t e r i a  f rom figure 6-1. 

and its adjoint in the RHP. Only the upper half of the s-plane is shown 

for  convenience. F r o m  experience with root locus techniques, one can 

see  that if the ze ros  of (7-104)  a r e  chosen to  be in the "Good" region of 

f igure  7 -3 ,  the locus must  pass through the Satisfactory region (the 

zero-phase locus is required in this case). 

Following the procedure outlined above, the poles of (7-104)  

The actual sys tem is indicated in the LHP 

A second order  model with poles 

( s  t 4 t 3 3 ) ( x  t 4 - 3 3 )  = ( s 2  t 8 s  t 25) ( 7 -  105) 

should be a good choice. This makes the root square locus equation 

K ( s 2  - 8 s  t 2 5 ) ( s 2  t 8 s  t 2 5 )  
= +1 

( s  - 6. 6 7 ) ( s 2  - 0. 455s t 17. l ) ( s  t 6. 6 7 ) ( s 2  t 0. 455s  t 17. 1) 

( 7 -  106) 

The z e r o s  of (7 -106) ,  which a r e  the poles of the model (7-105)  and i ts  

adjoint, are  indicated on figure 7 -3  by 0 .  

The root  locus for  (7-106)  is shown on f igure 7 -4 ,  which r e p r e -  

optimal" regulator and sents  the locus of the closed-loop poles of the 
2 -1 

its adjoint as a function of(r 11 3 11 ) 

write  down the cost  functional or even Q since these a r e  implied by 

selecting the model poles (7-105) .  

through the Satisfactory handling qualities region as anticipated. 

designer can choose a position along the root locus for  the closed-loop 

sys tem poles that meets  the handling qualities requirement  with a n  

acceptable level  of control effort. 

. Note that it i s n ' t  necessary  to  - 
N 

The root locus is seen  to  pass  

The 

A possible solution is indicated on 
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figure 7-4 by a,  which corresponds to  a value of K = 13. 2. 

loop poles for  this solution a r e  
The closed- 

= -7.1 
(7- 107) 

s1 

= -1. 75 f j 4. 17 
293 

S 

s o  that the closed-loop charac te r i s t ic  equation is 

s3  t 10.6s' t 4 5 . 2 s  t 145 = 0 (7-  108) 

The open-loop character  istic equation w a s  

s3 t 7.1s '  t 20. 1 s  t 114 = 0 (7- 109) 

Relating the coefficients of these two equations to  (7-102) it follows 

that 

ko = 145 - 114 = 31 

k l  = 45.2 - 20. 1 = 25. 1 

k2  = 10. 6 - 7. 1 = 3.5 

(7-110) 

These a r e  the feedback gains for  the sys tem s ta te  (phase) var iables ,  

- x, which a r e  re la ted to  the var iables  CY, q ,  and dh by 

CY 

= Hx - (7-  11 1) 

* 
where 

-12.2 -0.037 ] 
H = 6.67 - 2.76 -12.2 (7- 112) 

. [ 1 7 . 1  0.455 1 

.I. -I- 

The elements of H a r e  obtained direct ly  f r o m  the t ransfer  functions 
( 7- 103) 
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Therefore  the des i r ed  gain vector is obtained f r o m  

( 7 -  113) 

Taking the inverse of H, and performing the multiplication indicated 

resu l t s  in 

= t o .  424 deg Fjh /deg Q 

kQ C 

k = -0. 291 deg Fjh /deg per s e c  q 
q C 

( 7 -  114) 

If these gains a r e  reasonable f rom the implementation stand- 

point +he synthesis is complete. 

solution is shown in figure 7-5. 

The associated block diagram for  this 

F igure  7-5 Block Diagram of Pi tch Damper Designed by Root 
Square Locus 
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7.4 Equivalent Model PI for  General  Quadratic Functionals 

Consider a n  nth order ,  l inear  sys tem in canonical (phase-variable) 

fo rm given by equations (7-2)  - (7-5) ,  and a general  quadratic cost 

functional 

(7- 115) 

- 
where Q is any positive, semi-definite symmetr ic  matrix and F is a 
non-negative scalar. Two cost  functionals w i l l  be called equivalent" 

if  optimization of the two cost  functionals give 

w i l l  be shown in this section that the general  quadratic cost  functional 

the same resul ts .  It 

(7-115) is equivalent t o  one with a diagonal weighting matrix, which in 

turn,  is equivalent to  a cos t  functional of the f o r m  (7-1) based on the Model 

PI concept. 

of a general  weighting mat r ix ,  a, to those of a diagonal weighting mat r ix ,  

Qd, and t o  those of the Model PI weighting matrix, Q, for  equivalent 

cost  functionals. 

general  quadratic cost  functional in t e r m s  of the Model PI concept. 

A general  expression is developed for  relating the elements 

N 

Using this expression it is possible t o  interpret  any 

The basic  idea used to  establish this relationship is a d i rec t  

extension of that used by Aizerman (18) and Rekasius (19),  which was 

discussed in Chapter 3,  section 3. 3.  1. 

valid he re  because the  optimization process  is independent of the sys tem 

initial conditions. 

be  considered. 

variables- 

Their  procedure is completely 

At this point, only the first term in (7-115) needs to  

Expanding the integrand in t e r m s  of the state (phase) 
* 

n n-1 n 
- (i-1) (j-1) = 1 qii [x(i-1)]2 t 2 c c qij.x X 

2 

i= 1 i = l  j = i t l  a I I  x II 

(7- 116) 

* 
The time argument  is suppressed for  convenience when the meaning 
is clear.  
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where q.. a r e  the elements of G, and noting that 
1J 

(7-117) 

for  j = i, i t 1, i t 2, - a ,  n, when the system is in canonical phase- 

var iable  form,  one can see  that the f i r s t  t e rm of (7-115) is a l inear  

combination of integrals of the fo rm 

(7- 118) 

This type of integral can be integrated by par ts  successively to  establish 

the general  formula,  

+( j  -i- 1 )  

I = (-l)k 1 
k= 0 

x (k - i- l)x( j -k-2) for  ( j - i )  odd 

(7- 119) 

and 

1 - 

f o r  ( j - i )  even 

I = ( - l ) k  (k- i -  1)x(j-k-2) 

k= 0 

(7-  120) 

If the system is asymptotically stable,  x(t)  -, 0 as t + co, then ( 7 -  119) 

and the f irst  term of (7-120) a r e  constants that only depend on the sys tem 

initial conditions 

(7-115) can be reduced to  

- - 

Using the above general  formula the first term in 
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( 7 -  121) 

where c(x ) is a constant depending on the sys tem initial conditions, and 

v is defined as 
-0 

if ( j - i )  is odd 
? I =  i“ 

\ 1 if ( j - i )  is even 
(7-  122) 

Consider the resu l t s  thus far , indicated by (7-121). Only the 

integral  t e r m  of (7-121) can affect the optimization process  since c(x ) 

is a constant. 

diagonal elements of a. 
t e r m s  f rom the al ternate  diagonals of a where ( j - i )  is even. 

a l ternate  diagonal elements of a, where ( j - i )  is odd, can in no way 

affect the optimization. 

-0 
The f i r s t  summation in the integrand contains only the 

The double summation t e r m  only contributes 

The other 

For example a 4 X 4 matrix of the fo rm 

“13 

0 

0 

(7 -  123) 

is a completely general  4 X 4 weighting matrix for  a cos t  functional. 

Note also that  only the squares  of s ta te  var iables  appear  in (7-121), s o  

that  it can be  wri t ten with a diagonal weighting matrix. If the diagonal 

elements of a diagonal mat r ix ,  Qd are  denoted by qd then .. 
11 
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I I 

(7-  124) 

f o r  i =  1, 2, 3; - -, n, where 

q = min ((i-1) , (n-i)J ( 7 -  125) 

To obtain (7-124) f rom the integrand of (7-121) requi res  a transformation 

of the summation indices of the double sum s o  that the state variable in- 

dices are the s a m e  in both summations. It is easy to  verify by example 

that they are the same. 

A cost functional 

(7-  126) 

where Qd is a diagonal mat r ix  with elements (7-  124), is equivalent t o  

J (7-115) since 

(7-  127) 

and c(x ) is a constant. -0 
formed,  using the expression ( 7 -  124), that wi l l  produce an equivalent 

A diagonal weighting matrix can always b e  

quadratic cost  functional to  the general  form ( 7 -  115). 

It is an  easy mat te r  to  re la te  this resu l t  to  the Model PI f o r m  of the 

cos t  functional because the Model PI weighting matrix is jus t  a special 

case  of the above development. F o r  this t reatment  it is convenient to  

define the ( n  t 1) vector - & as 

to  use in 
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The Model PI cost  functional (7-  1) can  then b e  writ ten as 

which is ofthe same f o r m  as (7-115). 

direct ly  to  relate the elements of -- &aJ t o  the elements  of the diagonal 

weighting mat r ix  for  equivalent cost  functionals. 

The previous resu l t s  c a n b e  used 

* 
F r o m  (7-  124) one gets 

n 

(7-131) 

for  i = 1 , 2 , * - . ,  n, and q givenby (7-125). A general-weighting mat r ix  

and a Model PI weighting matrix for equivalent cos t  functionals can  b e  

related by equating (7-124) and (7-131), i. e. 

n 

p= 1 

i= 1 

(7-  132) 

for  i = 1, 2 ,3 , - . . ,  n, and q given by (7-125). 

If the n equations (7-132) can be solved for  the n elements of g 
in t e r m s  of the elements of 6, then it is possible t o  es tabl ish a cost  

functional of the Model P I f o r m  (7-1) or  (7-130) that is equivalent to  the 

general  cost  functional (7-  115). 

is related to  the Model P I  cos t  function J (7-130) by 

The general  cost  functional J' (7 -  115) 

* 
The indices on CY are  shifted by -1 because the elements  of 'y are  the 
charac te r  ist ic equation coefficients of the model which are typically 
index in this manner.  
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(7-  133) 

where c (x ) is a constant depending on the initial conditions. 

cl(xo) and IIL2II 
functionals are equivalent. 

Since 1-0 2 
can not affect the optimization process ,  the two cost 

T o  summar ize  the resu l t s ,  it is possible to  establish a quadratic 

cos t  functional with a diagonal weighting matrix, using the expression 

(7-  124), or a quadratic cost  functional of the form ( 7 -  1) based on the 

Model PI concept, using the expression (7-132), which is equivalent t o  

the general  quadratic cos t  functional (7-115). If a specific quadratic cos t  

functional is given, then one can determine the - CY f rom (7-132) that co r -  

responds to  a model for  that cost  functional, in the Model PI concept. 

This resu l t  can clarify a misconception about optimal" systems.  

It is ofteii mentioned (e. g. re fe rences  2 t  - 28 and 55) that the optimal 

regulator design generally has good response charac te r i s t ics ,  meaning 

f a s t  and well damped. This intuitive conclusion probably developed f r o m  

the fact  that for many of the weighting mat r ices  used in the early optimal 

regulator t reatments  resul ted in a n  approximate Butterworth configuration. 

But it is c lear  f rom the resu l t s  of this chapter that the response of the 

I t  optimal" regulator is direct ly  dependent on the state weighting matrix, 

and one can certainly choose a weighting mat r ix  that would resul t  in a n  

'I  optimalt1 regulator with te r r ib le  response character is t ics .  F o r  

example, if a weighting mat r ix  were  chosen, through ignorance, that 

corresponded to  a model with very  lightly damped complex poles, the 

dominant character is t ic  of the l1 optimal" regulator would tend to  be 

ve ry  lightly damped for smal l  values of control effort weight factor. 

is ve ry  important t o  understand the relationship between the state weight- 

ing matrix and the optimal solution. 

is not enough for a design engineer. 

It 

The fact  that stability is guaranteed 

The resu l t s  of this section can a l s o  be  applied to parameter  opti- 

mization problems of the type considered in Chapter 3 if and only if the 

pseudo initial conditions a r e  independent of the f r e e  parameters .  
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7.4. 1 An Example 

A simple optimal regulator problem considered in re ferences  

27 and 28 with a general  cost  functional w i l l  be interpreted h e r e  in t e r m s  

of the Model PI concept by forming anequivalent Model P I f o r m  cost  

functional. 

the X-15 a i r c ra f t  t reated in section 7. 3. 1 ( a l so  Chapter 6, section 6. 1). 

The cos t  functional used in re ferences  27 and 28 is 

The sys tem considered is the simplified pitch damper  for  

( 7 -  134) 

with q l l  - and r = 1. 0, where (Y and q are output var iables  and 6h 
C 

- 922'  

is the control variable. 

(phase) var iables  by 

The output var iables  a r e  re la ted to  the state 

(7-  135) 

where H is a 2 X 3 matrix given by the first two rows of (7-117), i. e. 

0 

-12.2 -0.037 

-2. 76- -12. 2 
H = 6.67 (7- 136) 

Then the s ta te  vector weighting matrix, Q, fo r  this example is 

d = HlQH ( 7 -  137) 

where 

(7- 138) 

or 
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l .05 0.229 0 1 
0 

0. 229 1.0 

0 

Q = 6 6 3 0 q l l  

As pointed out above, the off diagonal elements in (7-  139) d o  not affect 

the optimization process.  Using the expression (7-132) one can obtain 

thecv - for  the equivalent Model PI cost  function as 

- CY’ = d6630qll ’  [ 1.025 1. 0 0 1  (7- 140) 

The cost  functional (7-134) can then be interpreted as representing a 

f i r s t  o rder  model with a pole, s = -1.025. 

It is interesting to  look a t  the root square  locus for  this example, 

which can be writ ten down direct ly  using the simple f o r m  (7-39). 

sys tem poles were  given in section 7. 3. 1. 

The 

6630 q l l  ( s  - 1. 025)(s + 1. 025) 
= -1 

( s  - t. 6 7 ) ( s 2  - 0. 455 s t 17. l ) ( s  t 6. 67)(s2 t 0.455 s t 17. 1) 

(7-  141) 

The root  square locus (7-191) plotted on figure 7-6 is identical to that 

in figure 5 of reference 28 which w a s  obtained by solving the steady-state 

Riccat i  equation. 

and 1. 0 a r e  indicated by 8. 

the root square  locus gain increases  the dominant charac te r i s t ic  of the 

optimal regulator approaches the model represented by  the weighting 

matrix. 

tion. 

by the t ime response shown in f igure 7-7, which is f rom reference 28, 

but with the model response added. 

The poles of the optimal regulator for q l l  = 0. 2, 0. 5 

One can clear ly  see  f r o m  figure 7-6 that  as 

The excess  poles a r e  seen  to  approach a Butterworth configura- 

The dominant charac te r i s t ic  is a l s o  shown to approach the model 
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CHAPTER 8 

C ONCLUS IONS 

AND 

SYNTHESIS OF RESULTS 

8. 1 Conclusipns 
r) 

This thesis develops a new performance index, the Model PI,  

that br ings engineering design specifications into the analytical design 

process .  Application to  flight control sys tems is emphasized although 

the techniques apply to l inear ,  t ime invariant, determinis t ic  sys tems 

in general .  

quadratic functionals frequently appearing in modern control theory. 

The important difference is the ability to interpret  the weighting matrix ~ 

of the Model P I  direct ly  in t e r m s  of a model that re la tes  to  engineering 

specifications. 

that  s t a r t s  with practical  engineering specifications and uses the Model 

P I  as a synthesis tool to obtain a satisfactory design. 

The bas i c  form of the Model PI is the same  as that of 

A parameter  optimization design procedure is established 

The Model P I  is different f rom the famil iar  model-referenced 

integral  squared e r r o r  (ISE) performance index, except in cer ta in  

special  cases .  

systems.  

model-referenced ISE performance index. 

It can be used effectively in designing practical  control 

And, it is substantially m o r e  efficient to use than a comparable 

Some interesting new developments on the theory and application 

Only of l inear  optimal control have resulted f rom the Model PI theory. 

the single-control regulator problem is considered. Using a fo rm of the 

Model P I ,  it is possible to  interpret  the s ta te  vector weighting mat r ix  in 

terms of a model which the optimal regulator w i l l  approach in a limiting 
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case.  

to  the l inear  optimal control synthesis procedure using one root square  

locus. 

equivalent to  a general  quadratic functional. 

The Model PI concept provides an  interestingly simple solution 

It is possible to  compute a Model PI cos t  functional that is 

The Model PI represents  a new cr i te r ion  for  approximating one 

dynamical system (the model) by another,  based on a novel geometrical  

representat ion of l inear  autonomous systems.  

a l inear  model by a charac te r i s t ic  hyperplane and pseudo initial condi- 

tion vector in the model'  s extended s ta te  space. A sys tem'  s t ransient  

t ime response t ra jec tory  can be made to approximate that of the model, 

if the projection of the s y s t e m ' s  t ra jectory into the model ' s  extended 

s ta te  space can be made to l ie  close to the model ' s  charac te r i s t ic  plane,, 

and if the system'  s and mode l ' s  pseudo initial condition vectors  a r e  

close in the mode l ' s  s ta te  space. 

basic  form of the Model PI can be thought of as a generalized measure  

of the distance between the s y s t e m ' s  t ra jectory and the mode l ' s  

charac te r i s t ic  plane. 

Model PI in the definition of the s ta te  vector weighting mat r ix  used in 

a quadratic functional. In some cases ,  for  sys tems with ze ros ,  it  is 

necessary  to include a quadratic penalty on the e r r o r  between the s y s t e m ' s  

and model ' s  pseudo initial condition vectors.  

It is possible to represent  

The c r i te r ion  represented b y t h e  

The model' s character is t ic  plane en ters  the 

Minimizing the Model PI 

tends to make the s y s t e m ' s  t ra jectory match the model' s t ra jectory in 

the mode l ' s  extended s ta te  space; in other words,  the s y s t e m ' s  output 

and its f i r s t  1 

output var iables ,  where I is the order  of the model. 

dom is provided in the design parameters ,  minimizing the Model PI 

will produce exact model matching. 

derivatives tend t o  match the corresponding model 

If sufficient f r e e -  

The s ta te  space formulation of analytical design problems 

makes it possible to establish general  digital computer programs fo r  

designing l inear  control systems by parameter  optimization. Such a 

program has been established for the Model PI design procedure,  which 

only requi res  providing the appropriate input data cards  and writing 

one simple subroutine to  change f rom one design problem to another. 

The numerical  optimization procedure uses a technique, derived here ,  
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for  evaluating the gradient of the perform 

using a numerical  difference procedure.  

The Model PI design procedure has been s 

synthesis technique in three  flight control 

which rea l i s t ic  type design specifications 

8. 2 Synthesis of Resul ts  

Significant resu l t s  have been obtained in this thesis  effort that  

will be of interest  to  the pract ical  control sys tems engineer as well as 

the modern control theorist .  To  the practical  engineer,  the main con- 

tribution is the development of a systematic  design technique that allows 

him to introduce engineering design specifications into the process ,  in 

the convenient form of a model, and yet implement the technique in a 

general  and efficient manner on a digital computer. 

has been developing in the direction of these general  goals for  severa l  

years .  Models have been included in previous analytical design tech- 

niques, notably in the form of model-referenced integral squared e r r o r  

(ISE) performance indices. 

into control sys tem analysis  by Kalman has provided a convenient means 

of writing general  computer programs for control system design and 

analysis.  

designing l inear  control systems by parameter  optimization using a 

model-referenced ISE performance index has existed for some time now, 

but there  is l i t t le indication in the l i t e ra ture  that such programs exist. 

One problem that has hindered the application of parameter  optimization 

techniques to  practical  sys tem design, is that for  even moderately high 

order  sys tems and models the computational task can become enormous. 

However the Model PI design procedure has a potential of reducing the 

computation t ime by 20’7’0 to  possibly 85% of that required for  the model- 

referenced ISE procedure,  which should stimulate a renewed interest  in 

parameter  optimization design techniques. 

Control technology 

The introduction of s ta te  space notation 

The technology for  writing general  computer programs for  

Although the Model PI method is of general  applicability, it is of 

particular interest  for  flight tr ol system design. An analytical 

design technique m u s t  includ model in some manner to  be  effective 

in mos t  flight control sys t em design problems because of the specific 
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response charac te r i s t ics  needed for  a sat isfactory design. 

design of a flight control sys tem involves appl 

numerous t imes  because of the wide range of 

center of gravity locations,  and flight configu 

speed brakes ,  external  s to re s ,  etc. ). In SUC 

computational efficiency of an  analytical design technique becomes a n  

important factor and a potential savings of 20% to  85% offered by the 

Model PI method is quite impressive.  

Also the 

The general  computer program developed he re  for  the Model PI 

method has a l ready proved to be a n  effective synthesis tool even though 

it is only a prototype and can be  improved considerably. Some possible 

improvements and extensions will be  discussed subsequently. 

any new technique, one must  apply it to many types'of design problems, 

m o r e  than was possible in this thesis  effor t ,  to  a s s e s s  its t rue  potential 

and its limitation. 

a n  efficient, general  design program for  l inear  sys tems that would per -  

form virtually all of the tedious work of the design process.  

As with 

But it s eems  quite likely that it can be developed into 

One improvement needed to  meet  this desirable  objective is in 

the process  of forming the closed-loop sys tem t ransfer  function (o r  

functions) in t e r m s  of the f r e e  design parameters  or  doing away with 

this s tep completely. 

tedious task. 

parameter  optimization procedures ,  regard less  of the performance in- 

dex used, when implemented on a digital computer. 

proach is to establish cer ta in  standard feedback configurations that a r e  

easi ly  incorporated into the necessary  closed-loop t ransfer  function. 

Another possible approach is to  t ransform the open-loop sys tem into 

the canonical phase-variable f o r m  and redefine the f r e e  parameters ,  as 

functions of the original parameters ,  such that they a r e  only gains of 

state (phase) variables.  

constraints on the design procedure. 

F o r  multivariable sys tems this can become a 

This s tep in the design process  is common to  all of the 

A possible a p -  

However both of these may place undesirable 

Another area for improvement in the general  computer program 

is a procedure for establishing a good initial choice for  the f r e e  design 

s. Since m o s t  efficient opti ation algorithms find only 
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local minima,  the initial choice of f r e e  parameters  is important. 

possible approach that a p p e a r s  r a the r  interesting, is to  use the l inear  

optimal regulator solution as a first step in the computer program, 

then switch to  the parameter  optimization procedure. 

would have t o  formulate the problem such that cer ta in  s ta te  variable 

feedback gains in the optimal regulator problem correspond to  the 

f r e e  pa rame te r s  of the parameter  optimization problem. 

can be done without too many restr ic t ions,  one would compute the opti- 

mal feedback gains using the Model P I  ( a s  discussed in Chapter 7) ,  then 

use the values of those gains corresponding to  the f r e e  parameters  a s  

the initial choice in the parameter  optimization procedure. 

that one does not wish to  feedback all s ta te  var iables  in the final design. 

If this is a feasible approach it would combine some  of the b e s t  features  

of the two design methods. In the optimal-regulator problem the gains 

a r e  very easily calculated, but the solution requi res  feedback of a l l  

s ta te  variables.  Whereas,  in the parameter  optimization method find- 

ing the '' optimum'' gains is ha rde r ,  particularly for  a poor initial 

choice, but the designer can specify the feedback configuration. 

A 

To d o  this one 

Assuming this 

This a s sumes  

There a r e  severa l  resu l t s  of this thesis effortthat a r e  of bas ic  

interest  in control theory. The Model P I  represents  a new and different 

c r i te r ion  for control system design, although it has cer ta in  charac te r i s -  

t ics in common with the performance indices considered by Aizerman 

(18) and Rekasius (19) .  
has not only provided it with a solid foundation, but has a l s o  pointed out 

some significant l imitations to  Aizerman'  s and Rekas ius ' performance 

indices and some erroneous resu l t s  in the case  of the la t ter .  These are  

discussed in Chapter 3 ,  section 3 .  3 .  

is  established in a somewhat abs t r ac t  mathematical  sense ,  it is just  

a s  valid a cr i ter ion as the generalized integral squared e r r o r .  

exact model matching is possible both c r i te r ia  would produce it. 

exact model matching isn' t possible with the particular f r e e  parameters  

available,  both c r i t e r i a  a r e  measu res  of the deviation f rom the condi- 

tion of exact model matching. 

these c r i t e r i a  is whether they can be  used effectively in a design 

The rigorous t reatment  of the Model P I  theory 

Although the Model P I  c r i te r ion  

When 

When 

The only meaningful bas i s  for  judging 
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F o r  example, a s imple,  but probably very  crude,  c r i te r ion  would be  to  

make the two charac te r i s t ic  planes as close together as possible, i. e. 

minimize the angle between the two extended coefficient vectors.  Or 

a n  even s impler  and cruder  c r i te r ion  would b e  to  minimize the vector 

e r r o r  between the two coefficient vectors.  

This geometr ical  property may provide some interesting inter-  

F o r  example, using the Model PI pretations in nonlinear control also.  

in the optimal I t  bang-bangt1 control problem would still define a model' s 

charac te r i s t ic  plane going through the origin of the extended s ta te  space; 

the system given by 

where  u(t) can take on values of *lonly, thus 

or 
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t o  the singular control problem and other special  problems in cptimal 

c ontr 01 theory. 

Only the s implest  of l inear  optimal control problems, i. e. the 

single-control optimal regulator problem w a s  considered here.  

logical basis for  selecting the state vector weighting mat r ix  resu l t s  

A 

f r o m  using the Model PI concept. 

mal solution approaches the model represented by the Model PI weight- 

ing mat r ix  as the weighting on the control effort in the cost  functional 

goes t o  zero.  

a weak point in the theory up t o  now. 

control case  should be  the next s t ep .  

It is shown rigorously that the opti- 

The a rb i t r a r ines s  of selecting the weighting mat r ix  has been 

Extending this resu l t  to  the multiple 
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APPENDIX A 

GENERAL MODEL PI DESIGN 

F OR 

SECOND ORDER SYSTEMS 

It is possible to obtain a general  analytical solution to  the 

Model PI design of second order  systems for  various models and 

various f r e e  sys tem design parameters .  

this solution is essentially academic and theoretical. 

the use of the Model P I f o r  the s implest  possible examples and the 

procedure fo r  obtaining an  analytical solution when such is practical .  

It a l s o  provides a preliminary insight into the nature of sys tem designs 

obtained using the Model PI method. 

one is ostensibly required to exhibit general  solutions, no mat te r  how 

tr ivial ,  whenever they exist. 

The purpose of presenting 

It demonstrates  

F r o m  a theoretical  standpoint, 

A.  1 Problem Statement 

where 

Consider the general  second order  autonomous sys tem 

and with initial condition 

x’ = [ - 1  0 1  -0 
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The extended s ta te  vector ,  g ,  is related t o  the s ta te  vector ,  5, by 

where 

M =  

1 0 

0 1 

-a -a 1 0 

The coefficients a and a 0 1 are functions of free design parameters .  

The Model PI 

(A-3 )  

b 2-21 -- 
with = - and 

II E I I  

& I  = [ C Y 0  CY1 (A-4 )  - .  C Y 1  

can be used to  represent  a r b i t r a r y  models of ze ro ,  first,  and second 

order .  

i. e. the output is identically equal t o  the input. 

ca se  reduces to  the familiar integral  squared e r r o r  (ISE) criterion. 

A z e r o  order  model is  one which has a unity t ransfer  function, 

The Model PI in that 

The general  Model PI design problem for  second order  sys tems 

is to  se lec t  a. and a 

as a function of cy CY and cy2. 

A. 2 General Solution 

via the f r e e  pa rame te r s ,  that minimize (A-3 )  1’ 

0’ 1’ 

It is relatively simple to  solve analytically for  the minimum 

point of the Model PI for second order  systems.  

a ted f rom ( s e e  Chapter 4) 

The PI can be  evalu- 

PI = x’ Pxo -0 (A-5)  
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where P is a 2x2  symmetr ic  mat r ix  that is the solution of 

F'P t PF = - MGM (A-6)  

Equation (A-6)  represents  only three l inear ly  independent equations 

for 

ing 

the three independent elements of P. 

into (A-5)  gives 

Solving for  P and substitut- 

2 
a c t  

1 1 0  
2 ( -*0*1 + - P I  = - 

I I  E I I  2a0 

- 2 a a ~  (Y i- aoctl t a0ct2- 
2 2  2 2 

0 \ (A-7) t 

In order  to proceed f rom this point one must  know the functional de-  

pendence of a and a on the f r e e  design parameters .  Three  cases  

a r e  t reated which cover a wide variety of second order  sys tem design 

problems. 

start ing with (A-7)  and the specific functional relationships for the f r e e  

parameters .  The cases  considered a r e  

0 1 

Any others can be easily solved by a s imi la r  procedure 

a l  is a fixed, known constant and a 

design parameter  

is a f r e e  0 Case 1. 

a is a fixed, known constant and a is  a f r ee  

design parameter  
0 1 Case 2. 

a. and a 

parameter ,  k. 

a r e  l inear  functions of a f r e e  design 1 Case 3 .  

A. 2. 1 Case 1. a l -F ixed  and a - F r e e  0 

The necessary condition for  a minimum point of PI is 

2 (Y 2 + 2a0a2 2 - 2ct0ct2) 

= o  (A-8)  1 
a c t  8PI  - 1 1 0  

2a 1 
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The solution of (A-8) is considered for the three  types of models: 

zero ,  first, and second order .  

Case la. Z e r o  Order Model (same as the ISE cr i ter ion)  

A z e r o  order  model corresponds t o  CY = CY = 0 and CY a r b i t r a r y  1 2  0 
in the Model PI. F o r  this c a s e  (A-8) reduces to  

(A-9) 
2 
0 a 

which requi res  a + 00. The second order  system design corresponding 

to this solution would have a infinitely l a rge  frequency with nearly z e r o  

damping. 

0 

Case lb.  First Order Model 

A f i r s t  order  model is given by CY = 0 and  CY^ and CY 2 0 

The solution of (A-8) for  this case  is simply 

nonzero 

constants in the Model PI. The LY can be taken to be unit without l o s s  

of generality. 
1 

=  CY^ "0 0 1  ( A -  10) 

The character is t ic  equation of the second order  sys tem design for this 

solution is 

2 
S t a lS t  CY^ 0 1  0 (A-  11)  

1' 
Equation (A-11) is the general  Model PI design for  any f irst  

as a function of the known constant a 

order  model with a 

poles a r e  plotted on figure A - 1  in the s-plane scaled by a0 as a 

function of a 

nant pole approaches the model pole. 

as a f r e e  design parameter .  The corresponding 0 

One can s e e  f rom figure A - 1  that as a 00 the domi- 1' 1 
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a 

-2. 0 - 1 .  5 -1.  0 -0.5 0 

Figure  A - 1  Locus of Poles  for Model P I  Design for Case lb 
a s  a Function of a ( F i r s t  Order Model) 

1 

Case I C .  Second Order Model 

A second order  model corresponds to  cy 

being a r b i t r a r y  in the Model PI. The cy 

and cy being nonzero 

can be taken to be unity 

F o r  this case  equation ( A - 8 )  can be writ ten 

0 2 
and cy 

without loss of generality. 

as 

1 2 

3 2 t a2a2  = 0 
0 1  2a0 t (cy1 - Z a g )  a. ( A -  12) 

Not much can be  done to  solve this cubic in general .  

example it is easily solved numerically to give the Model PI design. 

There  is a n  interesting special  case  when the model has  a frequency of 

one radian per second and a damping ra t io  of 1/ 0 in which a general  

solution is possible. In that case  cy = 1 and cy = 2cy = 2, s o  

that (A-12)  gives the solution 

F o r  any specific 

2 
0 1 0 
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(A-23) 

The sys tem charac te r i s t ic  equation for this solution is 
1 

(A-14) 

The corresponding poles have been computed as a function of a 

plotted on figure A-2.  F o r  one specific value of a (a = f i  ) the 

and a r e  1 
1 1  

Model Pole  

-1.4 -1. 2 -1. 0 -0. 8 -0. 6 -0.4 -0. 2 0 

-5.3 

Figure  A-2 Locus of Poles  for  Model P I  Design for  Case  I C  
as a Function of a l  (Second Order  Model) 
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sys tem and model poles a r e  identical. 

are ranges of a 

0 substantially different f rom those of the model, however with only a 

as a f r e e  design parameter this is bound t o  occur no mat te r  what de-  

s ign procedure used. 

poorly posed. 

F igure  A-2 shows that there  

values for which the Model P I  solution produces poles 1 

In such a case the design problem would be 

A. 2. 2 Case 2. a -Fixed and a l - F r e e  0 

The necessary  condition for  a minimum point of the PI given 

by (A-7) for this case is 

(A- 15) 

Again the solution is considered for  the three types of models: 

first, and second order .  

ze ro ,  

Case 2a. Zero  Order  Model ( s a m e  a s  the ISE cr i ter ion)  

F o r  this case  (a1 = CY = 0 and a0 a rb i t r a ry )  equation (A-15) 
2 

gives the solution 

a l  = *J.o 

The corresponding sys tem character  ist ic equation is 

(A- 16) 

(A- 17) 

which is the well known solution to  the ISE cr i te r ion  (16, 17, 42) for 

a second order  system. 0. 5 for  all values of The damping rat io  is 

Case 2b. First Order  Model 

F o r  a first order  model (a = 0 ,  cy1 = 1) equation (A-15) has a 2 
general  solution 
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a l  = y m  (A-  18) 

The system charac te r  istic equation for this solution is 

s 2  t d m s  +- a. = o  (A- 19) 

Equation (A-  19) is the general  Model P I  design for second o rde r  

sys tems with a 

The corresponding pole locations a r e  plotted on figure A - 3  as a func- 

tion of the known constant a 

make the graph independent of the model t ime constant. 

Model P I  solution has a dominant pole approaching-the model pole. 

a f r e e  design parameter  and for  any f i r s t  o rder  model. 1 

The s-plane is again scaled by CY t o  0' 0 
As ao+ co the 

Model Pole 

-2. 0 -1.5 -1. 0 -0. 5 0 

Model Pole 

-2. 0 -1.5 -1. 0 -0. 5 0 

Figure  A-3 Locus of Poles  for  Model P I  Design for  Case  2b 
as a Function of a. ( F i r s t  Order  Model) 
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Case 2c .  Second Order Model 

F o r  a second order  model equation (A-15) has a general  solu- 

tion (with Q = 1) 2 

(A-20) 

This gives a sys tem character  ist ic equation 

(A-21)  

which is the general  Model PI design for any second order  model with 

a1 a f r e e  parameter .  

pletely general  solution in case  IC. because of the cubic equation for 

a 

Recall  that it was not possible to  obtain the com- 

In this case the solution is completely general .  0' 
It is s t i l l  interesting to  consider the special  model used in 

case  IC.  in order  to  present  a graph of the pole locations for  a one 

parameter  family of solutions. F o r  that model (a ,  = 1, a1 = 2a, = 2)  

the charac te r i s t ic  equation is 

2 
0 0 

(A-22)  

0' 
The corresponding poles a r e  plotted on figure A - 4  as a function of a 

F o r  a = 1 the sys tem and model poles a r e  identical. The resul ts  

a r e  quite s imi la r  to those of case  IC, and s imi la r  comments hold he re  

but with the roles  of a. and a 

A. 2. 3 Case 3 .  a and a Linear Functions of a F r e e  Pa rame te r  

0 

reversed.  1 

0- 1 

The coefficients a. and a l  may not be f r e e  design parameters  

themselves but ra ther  functions of a f r e e  parameter .  

functional relationships to occur in a second order system design are 

l inear  functions. 

The most  likely 

It is completely general  t o  take 
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A Model Pole 

Increasing a, r - y  

-1.4 -1. 2 

Figure  A - 4  

-1.0 -0. 8 -0. 6 0.4 -0. 2 

- s w  

Locus of Poles  for Model P I  Design for  Case  2c 
a s  a Function of a (Second Order Model) 

0 

0. 8 

0. 6 

d w 

0.4  

0. 2 

a = k  
0 

(A-23)  
a l = c  + c k  1 2 

as the l inear  functions of the f r e e  parameter  k. 
The necessary  condition for a minimum of the Model P I  is 

(A-24) 
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where the partial derivatives of PI a r e  given by the expressions in (A-8) 

and (A-  15) respectively. 

and substituting in equation (A-23)  gives 

Performing the indicated operations in (A-24)  

a2 t ka2 t k2a2 - 2ka cy 
2 

0 0 1 2 ] c2  = 0 (A-25) 
a 

2 
2 ( C l  + C2k) 

which can be reduced to the quart ic  

2 4  2 3  2 2 2  
(c2Q2) k + (2c1a2)  k + [ c l ( a l  - 2a CY ) - ( c l c i  t c )a ]k  0 2  2 0  

(A- 26) 2 2  3 2  
1 2 0  1 0  - ( Z C C C U  ) k  - C Q  = 0 

F o r  z e r o  and f i r s t  order  models in the Model P I  (both requi re  

0) equation (A-26) reduces t o  a quadratic s o  that general  analy- a 

t ical  solutions for k a s  a function of c and c a r e  possible. There 

appears  to  be l i t t le value in writing out these expressions and p re -  

senting graphs of the resulting two parameter  family of solutions (for 

c and c2). 

puted f rom (A-26) .  

which means only a numerical  solution is possible. 

= 
2 

1 2 

Numerical solutions for specific cases  can easily be com- 

A second order  model requi res  solving the quartic 
1 
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APPENDIX B 

A GENERAL DIGITAL COMPUTER PROGRAM 

FOR CONTROL SYSTEM DESIGN 

VIA PARAMETER OPTIMIZATION 

A general  computer program is descr ibed and l is ted in this 

appendix that w a s  developed for  designing l inear ,  t ime invariant con- 

t rol  sys tems via parameter  optimization. 

for the Model P I ,  it can be used with any quadratic functional a s  the 

performance index. Specifically, its use with a model-referenced 

integral  squared (ISE) performance index is described. 

contents of Appendix B are l is ted below. 

Although it w a s  developed 

The 

Section 

B. 1 

B. 1. 1 

B. 1. 2 

B. 2 

B. 3 

B. 3 .  1 

B. 4 

Title Page 

Description of Main P rogram and Its Use . . . . . .  308 

Input Da ta  F o r m a t  . . . . . . . . . . . . . . . . . . . . . . . . . . .  311 

P rogram Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  312 

IC Method for  Multivariable Sys tems. .  . . . . . . . . .  
Procedure  for  the Weighted Averaged Psuedo 

Procedure  for  Using a Model-Referenced ISE 
Per formance  Index . . . . . . . . . . . . . . . . . . . . . . . . . .  313 

Input Data F o r m a t  3 14 

315 

312 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  
Listing of Main P rogram and Subroutines. ,  . . . . .  
Main: An Averaged Gradient Direction 
Optimization Algorithm for Contr 01 

3 16 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Subroutines: 

M.RDES - Matrix Riccat i  Differential 
Equation Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 24 

Vector. . . . . . .  

harac te r  is t ics 

del PI . .  . . . . . .  332 

MOD 2. - F o r  Weighted Averaged 
Pseudo IC Method for  Multivariable 

MOD 3. - F o r  Model-Referenced ISE 
Performance Index . . . . . . . . . . . . . . . . . . .  338 

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 35 

COEF - Coefficients of the System 
Transfer  Function Numerator and 
Denominator (An Example). . . . . . . . . . . . . . . . . . . .  
DELPC - A Subroutine for  Pa rame te r  
Condrain& (An Example) 34 1 

34 1 

...................... 

The program is writ ten in FORTRAN - IV for  an LBM 360 

computer and uses severa l  subroutines f rom IBM' s Scientific Sub- 

routine Package (SSP) for mat r ix  operations. 

age mode of SSP ( s e e  reference 47 for details)  is used throughout 

this program. 

program. 

The Gompressed s to r -  

The description presented here  is sufficient to  use the 

B. 1 Description of Main P rogram and Its Use 

The main program,  called An Averaged Gradient Direction 

Optimization Algorithm for Control System Design, computes a s e -  

quence of parameter  values that approaches a local minimum point of 

erformance index over the parameter  space.  How rapid it con- 

rges  and how close it on cer ta in  cha r -  

e r i s t i c s  of the e control over 

cer ta in  cons user  specifies.  

The algorithm used is discussed in Chapter 4, section 4. 4. 

the performance index f rom equation (4-45a) and i ts  gradient f rom 

(4-45b) for the cur ren t  p a r  

It evaluates 

eter values and provides a logic for 
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stepping to  a new se t  of parameter  values. 

t ro l  and stopping conditions. 

the algorithm is presented in Chapter 4. 

It includes a s t e p  s ize  con- 

A simplified functional flow diagram of 

Six special  s u  quired for  a in  program. 

Three  of these,  MRDES, SNORM, and DIRCOS, 

tines that are  never changed f rom problem to  problem. 

tine, CALSYS, must  be changed for different c l a s ses  of problems. 

Three  vers ions are  presented that cover the classes of in te res t  here. 

The subroutine COEF is used in CALSYS MOD 1. It presents  the ba- 

s i c  data for  the specific design problem and therefore a new COEF is 

writ ten for each problem. 

and MOD 3. require  two subroutines similar to  COEF and is discussed 

in sections B. 2 and B. 3. 

clude parameter  constraints if desired.  

One subrou- 

The vers ions of CALSYS denoted MOD 2. 

The last subroutine, DELPC, is used to  in- 

The subroutines MRDES is used to  compute the steady-state 

solutions of equations (4-45c) and (4-45d). 

the continuous solution of the stationary mat r ix  Riccati  differential 

equation that occurs frequently in modern control theory and is a modi- 

fication of a procedure used by Athans and Levine (@). Its general  

use is descr ibed in the listing start ing on page 316. A code is includ- 

ed that makes MRDES r e t u r n  only the steady-state solution to  the main 

program. 

input data to main program) for  using MRDES: 

for the numerical  integration, denoted H; an  upper l imit  on the num- 

ber  of t ime increments to  integrate to  in case  the tes t s  of steady- 

s ta te  a r e  not satisfied,  denoted IMAX; and two numbers,  denoted SNE 

It w a s  writ ten to  compute 

Four  constants must  be  specified by the user  (pa r t  of the 

the t ime increment 

and YNE, used in the tes t s  for  steady-state. 

allowable magnitude of the norm 

solution to  b e  considered the steady-state value. 

S N E  is the maximum 
?> 

of the derivative of the mat r ix  for  the 

Y N E  is the per cent 

allowable e r r o r  in the norm of the mat r ix  at steady-state.  

* 
The norm used throughout this program is the sup-norm, i. e. the 
magnitude of the numerically l a rges t  e lement  of the matrix or 
vector.  
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The subroutines SNORM and DIRCOS 

spective l ist ings on pages 330 

The user  m u s t b e  s u r e  t 

for  his problem. MOD 1. is f o  

output systems or multivariable sys tems tre 

input/output systems.  

that are explicit functions of the free parameters. 

pendence of these quantities on the f r e e  pa rame te r s  is only through the 

system t ransfer  function numerator  and denominator coefficients which 

a r e  computed in the subroutine COEF. 

does not depend on the specific sys tem being designed. The subroutine 

COEF and the data input ca rds ,  which are discussed subsequently, are 

the only i tems that depend on the specific design problem, unless p a r a -  

me te r  constraints are  used. COEF is a s imple listing of the numerator 

and denominator coefficients as a function of the f r e e  parameters .  

example is presented in the subroutine l ist ings (page 341). 

It computes all the quantities in equation (4-45) 
The functional de-  

Therefore  CALSYS MOD 1. 

An 

The subroutine DELPC evaluates the contributions t o  the p e r -  

formance index and its gradient due to  the parameter  constraints,  if 

such are  included in the design problem. A constant, RPC,  specified 

in the input data,  is used to  s e t  the relative weighting of the parameter  

constraint  contributions to  the other contributions. 

for DELPC is given h e r e  because of the many possible f o r m s  one might 

want to  use. 

parameters  is presented in the subroutine l ist ings on page 341. 

order  t o  avoid needless computations when no constraints are required,  

se t  RPC = -0. 0 in the input data. However one must  still include some 

DELPC subroutine in the total package. 

No general  f o r m  

An example of DELPC for  a quadratic penalty on the 

In 

The total computer program package consists of 

Main P r o g r a m  
=DES 
SNORM 
DIRCOS 
CALSYS MOD 1. 
C OEF 
DELPC 
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B..l. 1 InDut Data F o r m a t  

The program is dimensioned for  up to  a 20th order  with 

up to  10 f r e e  design parameters .  

order .  

of any sys tem by the Model PI 

for a specific problem a r e  ind 

The model can  a l s o  be of up to  20th 

Within these restr ic t ions the program can  be u 

. The necessary  input data ca rds  

First Card  - F o r m a t  Statement No. 3 

N, M, K ,  STEP,  ITMAX, .H, IMAX, SNE,  YNE, RXO, RPC,  LI 

where 

N 

M 

K 

STEP 

is t h e  order  of the s y s t e m ' s  denominator ( N  I 20). 

is the order  of the sys tem'  s-numerator  ( M  I N-1). 

is the number of f r e e  design parameters  ( K I 10). 

is the initial step s ize  for  the optimization 
algorithm. 

is a n  upper l imit  on the number of s teps  to  
be computed. 

IT MAX 

H is the t ime increment for  numerical  integration 
in MRDES (€3 should be about 1/10 the smal les t  
character is t ic  t ime of the system).  

IMAX is the maximum number of time increments to 
integrate to  in MRDES. 

SNE is the maximum allowable value of the norm of 
the derivative of the ma t r ix  solution a t  steady- 
state in MRDES. 

Y NE is the maximum allowable e r r o r  in the norm of 
the mat r ix  solution a t  steady-state in MRDES. 

RXO is the relative weighting of the quadratic penalty 
on the pseudo I C ' s  in the general  Model PI. 

RPC is the relative weighting of the parameter  con- 
s t ra ints  in the performance index. 

LI is the order  of the model plus one (LI  I N t  1). 

Next Card(s )  - F o r m a t  Statement No. 24 

PAR(I), I = 1, K 

where PAR( I) is a vector whose elements are the f r e e  design parameters .  

An initial choice for  PAR(1) is required here  as input data. 

311 

d 



W(I) ,  I = 1, N 

where W(1) is a vector  whose elements a r e  the 

the pseudo IC weighting mat r ix  ( s e e  equation (4-12) ). 

ALPHA(I), I = I, LI 

where ALPHA(1) is the model'  s coefficient vector in the s y s t e m ' s  ex- 

tended s ta te  space - 2i, ( s e e  equation (3-26),  divided by 11 - 5 11 . 
B. 1. 2 P rogram Output 

The program prints out STEP,  PAR(I), F(I), XO(I), PI and DPI 

each optimization step ( i terat ion) ,  where F(I) is the l a s t  row of the 

system coefficient mat r ix ,  XO(1) is the s y s t e m ' s  pseudo IC vector,  P I  

is the value of the performance index, and DPI is the change in the 

performance index f rom that a t  the previous value of PAR(1). 

program terminates it prints out the number of optimization steps 

taken, the cur ren t  step s ize ,  PAR(  I ) ,  PI, XO( I) ,  and the final sys tem 

numerator and denominator coefficient values. 

nate if any one of the following occur: 

If the 

The program can t e r m i -  

1 .  stopping conditions satisfied; 

2. the upper l imi t  on the number of s teps  to  be computed, 
ITMAX, is reached, or 

the stopping condition is bypassed because P I  < , 1 exp-10. 3. 

The reason  for terminating is a l s o  printed. 

dure  for using the program with this method is the same a s  that 
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discussed in B. 1 with three exceptions. 

be used instead of MOD 1. Secondly, CALSYS MOD 2. requires  two 

subroutines, COEF1 and COEFZ, f o r  the two sys t em transfer  charac-  

te r i s t ics  considered ( s e e  section 3. 2. 3). 

for XMO( I) mus t  b e  the weighted averaged pseudo I C ' s  of the two model 

First CALSYS MOD 2. mus t  

Finally,  the input data ca rds  

t ransfer  charac te r i s t ics .  

The subroutines COEFl  and COEF2 perform the same function 

as COEF except for  two sys tems with the s a m e  denominator. 

are writ ten s imilar  t o  COEF (for example s e e  page 341) with the follow- 

ing format  for  their  names: 

They 

COEFl (ACOF, BCOF, PAR, CC) 

COEF2 (BCOF, PAR, CC) 

where ACOF is the denominator coefficient vector ,  BCOF in COEFl  is 

the numerator coefficient vector for the first sys tem,  BCOF in COEFZ 

is the numerator coefficient vector for the second sys tem,  and CC is the 

relative weighting factor for  the two systems.  

given in COEFland (14CC) must  be given in COEF2 a s  CC. 

The value of CC must  be 

The total computer program package consists of 

Main P r o g r a m  
MRDES 
SNORM 
DIRCOS 
CALSYS MOD 2. 
C OEF 1 
COEF2 
DELPC 

B. 3 Procedure  for  Using a Model-Referenced ISE Performance Index 

The procedure for  using a model-referenced ISE performance 

index in this computer program is quite s imi la r  t o  that described in 

B. 1,  but there  a r e  some changes in the input data cards .  In Chapter 5, 

section 5. the model-referenced ISE performance index is writ ten as 

a quadratic functional of an  augmented s ta te  vector consisting of the 

n-dimensional sys tem state vector and the I -dimensional model state 

vector.  

whose coefficient matrix is partitioned into the original sys tem and 

model coefficient ma t r i ces ,  and by appropriately redefining the s ta te  

By defining a new (nt1)-dimensional autonomous sys tem,  

313 



vector weighting matrix, Q, the optimization problem becomes of the 

s a m e  form as that for  the bas ic  Model PI method. 

program can be used without modification. 

cur  in the subroutine CALSYS MOD 3. 

The main  computer 

All necessary  changes oc- 

Two subroutines,  COEF and COEFM, must  be writ ten fo r  use 

in CALSYS MOD 3. fo r  each specific design problem using this type of 

performance index. 

on page 341. 

s y s t e m ' s  numerator and denominator coefficients t o  the f r e e  design 

parameters .  COEFM presents  the numerical  values of the mode l ' s  

numerator and denominator coefficients and has the following name 

format:  

COEF is of the same  fo rma t  as the example l is ted 

It s imply l i s t s  the functional relationships of the actual 

COEFM(ALPHA, BETA, NM, MM) 

where ALPHA and BETA a r e  the model' denominator and numerator 

coefficient vectors  respectively,  and NM and MM are  the orders  of 

the model'  s denominator and numerator respectively. 

values of NM and MM must  be given in COEFM. 

The numerical  

Pa rame te r  constraints can be included in DELPC as discussed 

in B. 1. 

The total computer program package consists of 

Main P r o g r a m  
MRDES 
SNORM 
DIRCOS 
CALSYS MOD 3. 
C OEF 
C OEF M 
DELPC 

B. 3.  1 Input Data F o r m a t  

Since the ma in  program is dimensioned for  up to  a 20th order  

sys tem,  the dimension of the augmented s ta te  vector (actual sys tem 

plus model) can not be l a r g e r  than 20. 

f r e e  design parameters .  

s ame  form as those descr ibed in B. 1. 1 but with the following change: 

The re  can still be  up to  10 

The input data ca rds  a r e  basically of the 
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First Card 

N is the dimension of the augmented s ta te  vector,  
i. e. N = n+l where n is the order  of the actual 
sys tem and 1 is the order  of the model (N 5 20). 

M 

RXO 

L I  

is the order  of the actual s y s t e m ' s  numerator.  

is set equal to  -0. 0. 

is s e t  numerically equal t o  N 

Next Card( s )  

PAR(I), I =  1,  K 

Same as before 

Next Cards 

XMO(I),  I =  1 ,  N 

and 

W(I), I =  1,  N 

These a r e  i r re levant  since R X O =  - 0 . 0  but the appropriate  number of 

data cards  must  be included. 

Next Card( s )  

ALPHA(I), I = 1, LI  

Here ALPHA(1) is redefined a s  the row vector" 

where gl -1 and gn-l are (1 -1) and (n-1) dimensional null vectors  re- 

s p e c t ivel y. 

B. 4 Listing of Main P rogram and Subroutines 

The main computer program and subroutines a r e  l is ted on the 

following pages. 

x: This is equivalent to  the vector - h defined by (5-17) in Chapter 5. 
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MAIN 'PROGRAM LISTING CONTINUED 

LL=N*(N+1)/2 
NN=N*N 
NK=N*K 
KN=K*(N-l)+l 
L IL=LI*c( L I+1) 12 
KLI=NK+l 
L IK=LI*K 
L I N=L I *N 
REK=K 

ISAVE=IMAX 

IC=1 
DO 241 I=ltLI 
IL=I*(I+1)/2 
DO 240 J=IC,IL 
J I = J+1- I C 

I C=I L+l 

DCK=lo/SQRT(REK) 

C 

240 W(J)=ALPHA(I)*ALPHA(JI) 

241 CONTINUE 
C 
C INITIALIZE VARIABLES. 
C 

PIOLD=olE 20 
PIPC=O. 
PIXO=O. 
I T=O 
DO 25 I=l,LL 
XXIC(I)=000 
PIC( I)=O.O 

25 ZERO(Il=Oo 
DO 27 I=l,K 
GXO( I)=O. 

27 GPC( I)=O* 
C 

WRITE(6rl) 
WRITE( 6 9 1 0 3 )  
'JJRITE(6,3) N , M , K , S T E P , I T M A X , H , I M A X ~ S N E I R X O , R P C , L I  
WRITE(69109 1 
WRITE(bt20) (ALPHA(I1, I=l,LI) 
WRITE(6,104) 
WRITE(6r20) (XMO(I1, 1=1,N) 
WRITE(6,105) 
WRITE(6920) (W(I), I=l,Nl 
WRITE(69106) 
WRITE(6920) (Q(I), I=l,LIL) 
WRITE(6,107) 
WRITE(69201 (PAR(I), I=l,K) 
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M A I N  PROGRAM L I S T I P i G  CONTINUED 

C START OF O P T I M I Z A T I O N  ALGORITHM. 
C 

C 

C THE D I R E C T I O N  OF THE LOCAL GRADIENT, THEN COMPUTE THE AVERAGE OF 

30 CONTINUE 

C WITHIN EACH ITERATION, COMPUTE AN INTERNEDIATE POINT ONE srw IN 

C A T  THE END OF THE ITERATION, THE NEW STEP 'JJILL BE IN THIS 
C THE D I R E C T I O N  COSINES OF THE GRADIEN.TS AT THESE TWO POINTS. 

C AVER AGE D I RECT I ON 0 

C 
DO 55  IA=1,2  

C 
300 CONTINUE 

W R I T E ( 6 , l Z )  STEP 
WRITE(6,ZO) ( P A R ( I ) ,  r = l , K )  
C A L L  CALSYS(F,AT,BT,XOIALPHA,QTHIQ,PAR) 
W R I T E ( 6 , 2 0 )  ( F ( I ) ,  I=N,NN,N) 
d R I T E ( 6 , Z g )  ( X o ( I ) ,  I = l t N )  

C 
C COMPUTE CONTRIBUTION T O  THE PERFORMANCE INDEX, P IX .  
C 

I MAX = I SAVE 
IACT=O 
YN( 1) =YNE 
DO 3000 I= l , LL  

CALL M R D E S ( F , Z E R O , Q t P , N , H ~ S N E ~ Y N ~ I M A X ~ I A C T , O )  
I F ( I M A X - 1 ) 3 0 2 , 3 0 1 , 3 0 2  

GO T O  3 0 3  

'3000 P i  I ) = P I C ( I )  

3 0 1  W R I T E ( 6 9 1 9 )  

3 0 2  N R I T E ( b , 1 3 )  I A C T  
3 0 3  W R I T E ( 6 9 2 0 )  ( Y N ( I ) ,  I=1,10) 

C A L L  MPRD ( P 9 X O  9 AM A T  9 N 9 N 9 1 9 0 9 1 1 
PIX=G.O 
DO 3 0 4  I = l , N  

304 P I X = P I X + X O ( I ) * A M A T ( I )  
C 
C I F  2 x 0  I S  ZERO, BYPASS COMPUTING P I X 0 .  
C 

C 
I F ( R X O  ) 308 9 3 0 8 9  3 0 5  

3 0 5  DO 306 I = l , N  
3 0 6  A V E C ( I ) = X G (  I ) - X M O ( I  1 

C A L L  MPRD( jV 9 AVEC, BVEC t N  t N  9 2 9 0 t 1 i 
PIXO=O.O 
DO 307 I = l t N  

307 PIXO=PIXO+AVEC(I)*BVEC(I) 
3 8 8  CONTINUE 
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M A I N  PROGRAM L I S T I N G  CONTINUED 

C I F  RPC I S  ZERO, BYPASS C A L L I N G  THE SUBROUTINE DELPC9 THAT COMPUTES 
C THE VALUE AND GRADIENT OF THE PARAMETER CONSTRAINT FUNCTIG;\I. 
C 

C 
I F (  RPC) 3 1 0 9 3 1 0 9 3 0 9  

309 C A L L  DELPC(GPC9PIPC9PAR9RPC) 
310 CONTINUE 

C 
C COMPUTE CURRENT VALUE AND CHANGE I N  PERFORMANCE INDEX. 
C 

P I = P I X + P I X O + P I P C  
D P b P I O L D - P I  
W R I T E ( 6 t 2 0 )  P I 9  D P I  

C 
C STEP S I Z E  CONTROL AND S T A B I L I T Y  CONSTRAINT FOR ALGORITHM. 
C 

C 
C I F  PERFORMANCE INDEX INCREASED9 CUT STEP S I Z E  I N  HALF. 
C 

IF( IT+IA-2)320,311,311 

311  I F ( D P 1 ) 3 1 2 9 3 1 2 9 3 2 0  
3 1 2  STEP=Oe5*STEP 

I F (  1 A - 1 1 3 1 3 9 3 1 3 9 3 1 5  
C 
C I F  P I  INCREASED BETWEEN ITERATIONS, GO BACK HALF WAY TO THE 
C AVERAGE PARAMETER VALUE AND T R Y  AGAIN. REPEAT T H I S  NO HORE THAK 
C FOUR TIMES. 
C 

3 1 3  I F ( K U T - 3 ) 3 1 3 1 9 3 1 3 1 9 3 2 0  

314 PAR(I)=AVPAR(I)-STEP*GPI(I) 
3131 DO 3 1 4  I = 1 9 K  

KUT= KUT+ 1 
GO T O  3 0 0  

C 
C I F  P I  INCREASED W I T H I N  T H I S  I T E R A T I O N 9  TAKE AN 1NTER;dEDIATE P O I N T  
C HALF WAY BACK TO THE CURRENT PARAMETER VALUE. 
C 

3 1 5  CONTINUE 

3 1 6  PAR(I)=PAROLD(I)-STEP~GPIOLD(i) 
DO 316 I = l , K  

GO TO 300 
C 
C TERMINATE I F  THE NUMBER OF I T E R A T I O N S  EXCEEDS ITMAXo 
C 

3 2 0  I F ( I A - 1 ) 3 2 0 1 * 3 2 0 1 9 3 2 0 3  
3201 I F ( I T M A X - I T ) 7 2 ~ 7 2 ~ 3 2 0 2  
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M A I N  PROGRAM L I S T I N G  CONTINUED 

3 2 0 2  W R I T E ( 6 r l l )  I T  
W R I T E ( 6 9 1 2 )  STEP 
WRITE(6,20)  ( P A R ( I 1 ,  I = l , K )  
W R I T E ( 6 9 1 4 )  P I  
WRITE(6,2U) ( F ( 1 ) r  I=N,NN,N) 
KUT=1  

3 2 0 3  CONTINUE 
C 
C COMPUTE GRADIENT OF THE PERFORMANCE INDEX. 
C 
C COMPUTE THE GRADIENT OF THE INTEGRAL OF XQX, CALLED GIX. 
C 

C 
C A L L  M P R D ( B T , A M A T , G I X , K , N ~ O ~ O ~ l )  

I M A X = I S A V E  
IACT=O.O 
Y N ( l ) = Y N E  
I C = 1  
DO 322 I = l , N  
I L = I * ( I + 1 ) / 2  
DO 3 2 1  J= IC, IL  
J I =J+l- IC 

3 2 1  X X O ( J ) = X O ( I ) * X O ( J I )  
I C = I L + l  

322 CONTINUE 
C A L L  MTRA(F*FT,N,N,O) 
DO 3 2 2 0  I= l ,LL  

C A L L  MRDES( FT,ZERO,XXO ,XX,N,H,SNE,YN, I i 4 A X 9  I A C T q O )  
I F ( I M A X - l ) 3 2 4 , 3 2 3 , 3 2 4  

GO TO 3 2 5  

3 2 2 0  X X ( I ) = X X I C ( I )  

323 W R I T E ( 6 r l 8 )  

324 W R I T E ( 6 , 1 3 )  I A C T  
3 2 5  W R I T E ( 6 9 2 0 )  ( Y N ( i ) ,  1=1,10) 

C 
C A L L  M P R D ( A T , X X , A M A T , K , ~ , ~ , l , ~ )  
C A L L  MPRG( A M A T  
DO 3 2 6  I=KN,NK 
J=l-KN+ I 

P 9 BMAT 9 K,N 9 0 9 1 914 1 

326 GIM J)=G'IX( J ) -BMAT(  I )  
C 

C 
I F ( N - L 1 ) 3 2 6 0 , 3 2 6 2 , 3 2 6 2  

3 2 6 0  CALL  M P R D ( A ~ A T , H T Q , B M A T , K , ~ , O , ~ , L I )  
DO 3 2 6 1  I = K L I I L I K  
J= I - K L I  + I  

3261 G I X ( J I = G I X ( J ) - B M A T ( I )  

3262 CONTINUE 
C 
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C 
C 

C 
C 
C 

327 

328 
329 

c 
C 
C 

5 40 
C 
C 
C 
C 
C 

C 

C 
C 
C 

C 
C 
C 
C 
C 
c 

5 4 1  

5 4 2  

5 4 2 1  
5 4 2 2  
5 4 2 3  

C 
C 
C 

5 4 3  

M A I N  PROGRAM L I S T I N G  CONTINUED 

I F  RXO IS ZERO, BYPASS COMPUTING GRADIENT OF I N I T I A L  CONDITION. 

I F I R X 0 ) 3 2 9 , 3 2 9 , 3 2 7  

COVCIJTE THE GRAD1 ENT OF (XMO-XO) T*d* (XMO-XO 1 ,  CALLED GXO. 

C A L L  MPRD(BT,BVEC,GXO,~*~,0,0,1) 
DO 3 2 8  b 1 , K  
G X O ( I ) = R X O + G X O ( I I  
CONTINUE 

COMPUTE THE TOTAL GRADIENT OF THE PERFORMANCE INDEX, GPI.  

DO 540 I=l,K 
GPE(I)=GIX(I)+GXO(I)+GPC(I) 

TERMINATE IF THE GRADIFNT I S  E S S E N T I A L L Y  ZERO, OTHERWISE COMPUTE 
THE AVERAGE OF T H E  D I R E C T I O N  COSINES OF THE GRADIENTS FOR THE TWO 
P O I N T S  W I T H I N  T H I S  ITERATION. 

C A L L  SNORM( GP I ,GP I SN 9 K 92 1 
I F ( G P I S N - ( . l E - 2 0 )  )80 ,80 ,541  

I F (  I A - l I 5 4 2 9 5 4 2 9 5 4 4  

D I R E C T I O N  COSINF O F  GRADIFNT A T  F I R S T  POINT. 

C A L L  D I R C O S ( G P I , G P I E N , G P I O L D , K )  

STOPPING CONDITION. TERMINATE I F  BOTH THE DECREASE I N  THE 
PERFORMANCE INDEX IS LESS THAN001  PER CENT, AND THE LENGTH OF THE 
GRADIENT T I M E S  THE CURRENT STEP S I Z E  I S  LESS THAN 01  PER CENT 
OF THE PERFORMANCE INDEX. 

IF(PI-(.lE-10))70~70~5421 
IF~ABS(DPI)-~OOOl+PI~5422~!5422~5423 
I F ~ G P I E N * S T E P - ~ 0 0 1 * P I ) 7 1 , 7 1 , 5 4 2 3  
CONTINUE 

COMPUTE AN INTERMEDIATE POINT FOR T H I S  ITERATION, 

STEP=O. 5*STEP 
DO 5 4 3  I=l,K 
PAROLD( I I = P A R ( I )  
PAR(I)=PAR(I)-STEP*GPIOLD(I) 
P z OLD=P I 
GO TO 5 5  
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M A I N  PROGRAM L I S T I N G  CONTINUED 

C 
C 

C 
C 
C 

5 44 

5 4 5  

C 
C 
C 
C 
C 

5 46 
547 

C 
C 
C 
C 

5 4 8  
5 5  

C 

5 5 0  
C 
C 
C 
C 
C 

5 6  
C 

C 
70 

7 1  

72 
80 

T I O N  COSINE OF ER AT T o  

C A L L  DIRCOS(GPI,GPIEN,GPI,K)  

ADD THE DIRECTION'COSINES FOR BOTH P O I N T S  OF T H I S  ITERATION. 

DO 545 I = l , K  
G P I ( I ) = G P I ( I ) + G P I O L D ( I )  
C A L L  SNORM( GP I ,GP I SN 9 K 92 1 

I F  THE SUM OF D I R E C T I O N  COSINES HAPPENS TO BE ALMOST ZERO, D E F I N E  
ARBITRARILY,  A GRADIENT OF U N I T Y  LENGTH AND WITH A L L  COMPONENTS 
EQUAL, OTHERWISE CONTINUE COMPUTATIONS. 

IF(GPISN-(olE-20))5469546548 
DO 547 I = 1 9 K  
G P I (  I )=DCK 
GO TO 5 5  

COMPUTE THE D I R E C T I O N  COSINE OF THE SUM OF THE D I R E C T I O N  C 3 5 I N E S  
FOR THE TWO POINTS, AND STORE I T  I N  G P I o  

C A L L  D I R C O S ( G P I , G P I E N I G P I ~ K )  
CONTINUE 

1 T = I  T + l  
DO 5 5 0  I=l,LL 
X X I C ( I ) = X X ( I )  
P I C (  I ) = P (  I) 

COMPUTE THE AVERAGE VALUE OF THE PARAMETER VECTOR W I T H I N  T H I S  
I T E R A T I O N  AND STEP FROM THAT P O I N T  I N  THE D I R E C T I O N  OF THE 
D I R E C T I O N  COSINE OF THE AVERAGE D I R E C T I O N  COSINES. 

STEP=2*O*STEP 
DO 5 6  I = l , K  
A V P A R ( I ) = o S * ( P A R (  I ) + P A R O L D (  I)) 
PAR(I)=AVPAR(I)-STEP*GPI(I) 

GO TO 30 

W R I T E ( 6 9 6 )  
GO TO 80 
WR I T E (  6973 
GO TO 80 
W R I T E ( 6 r  5 )  
CONT I NUE 
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MAIN PROGRAM LISTING CONCLUDED 

C COMPUTE THE CHARACTERISTIC POLYNOMIAL COEFFICIENTS 
C 

DO 81 1=19N 
IN=I*N 

81 AMAT(I)=-F(IN) 
C 
C COMPUTE THE NUMERATOR COEFFICIENTS CORRESPONDING TO THE INITIAL 
C CONDITIONS AND THE CHARACTERISTIC POLYNOMIAL COEFFICIENTS. 
C 

NM=N-1 
8MAT(l)=-AMAT(l)+XO(l) 
DO 8 3  I=Z,NM 
c=o. 
NI=N-I 
NII=NI+2 
DO 82 J=l,NI 
JI=J+I 
JJ=J+1 

8 2  C=C+AMAT(JI)+XO(JJ) 
8 3  BMAT(I)=XO(NII)+C 

BMAT(N)=XO(Z) 

WRITE(6911) IT 
WRITE(6912) STEP 
WRITE(698) 
WRITE(6920) (PAR(I1, I=l,K) 
WRITE(6914) P I  
WRITE(6910) 
WRITE(6920) (Xo(I19 I=l,N) 
WRITE(6922) 
WRITE(6920) (AMAT4119 I=l*N) 
WRITE(69123) 
WRITE(6920) (BMAT(I1, I = l , N )  

CALL E X I T  
END 

C 

C 
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C 
C HERMAN A. R E D I E S S ,  M I T ,  DEPTm O F  A E R O N A U T I C S  AND A S T R O N A U T I C 5  

C 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

C MARCH 1968 

C S U B R O U T I N E  MRDES 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

P U R P O S E  
COMPUTES T H E  T I M E  S O L U T I O N  OF T H E  S T A T I O N A R Y  M A T R I X  R I C C A T I  
D I F F E R E N T I A L  E Q U A T I O N  

D Y ( T ) / D T  = A T * Y ( T )  + Y ( T ) * A  - Y ( T ) * B * Y ( T l  + C 9 Y ( C )  = YO 

WHERE A I S  S T A B L E  A N D  B, C, AND Y O  ARE S Y M M E T R I C  AND P O S I T I V E  
S E M I  -DEF I N I TEm 

U S A G E  
C A L L  MRDES(A,B,C,Y,N9H,SNE,YNIIMAX,IACT,KOUT) 

D E S C R I P T I O N  O F  P A R A M E T E R S  
A - NAME OF C O E F F I C I E N T  M A T R I X  ( N X N ) ,  G E N E R A L  STORACE MODE 
B - M A T R I X  I N  Q U A D R A T I C  T E R M  ( N X N ) ,  S Y M M E T R I C  STORAGE MODE 
C - C O N S T A N T  F O R C I N G  M A T R I X  ( N X N ) ,  S Y M M E T R I C  STORAGE MODE 
Y - UPON ENTRY,  Y IS THE INITIAL COND~TIGN Y ( O )  AND upm 

RETURN, I T  I S  THE SOLUTIOI \ I  ( N X N )  9 SYi4m STORAGE MODE 
N D I M E N S I O N  O F  i"lATR1CESo NOT G R E A T E R  T H A N  200 
H - T I M E  S T E P  S I Z E  
SNE - MAX ALLOWABLE M A G N I T U D E  O F  D Y ( T ) / D T  NORM FOR S T E A D Y  

Y N  - A VECTOR FOR S T O R I N G  P A S T  10 V A L U E S  O F  Y NORM U S E D  
S T A T E  TEST. 

I N  A T E S T  F O R  S T E A D Y  STATE.  T H E  F I R S T  ELEMENT,  Y N ( 1 1 ,  
I S  USED A T  E N T R Y  TO S P E C I F Y  T H E  MAX A L L O W A B L E  E R R 0 2  
I N  T H E  NORM O F  Y A T  S T E A D Y  STATE.  

I M A X  - MAX NlJiYlBER O F  T I M E  S T E P S  ALLO'r lEDo A L S O  USED FOR A N  
O U T P U T  F L A G  TO D E N O T E  R E A C H I N G  S T E A D Y  S T A T E  OR I K A X .  

0 - S T E A D Y  S T A T E  REACH'ED 
1 - I A C T = I M A X  

I A C T  - A C T U A L  NUMBER OF T I M E  S T E P S  WHEN Y I S  R E T U R N E D  TO T H E  
M A I N  PROGRAM. CORRESPONGING T I M E  I S  T = H * I A C T o  
M A I N  PROGRAM MUST S E T  I A C T z d  T N I T I A L L Y m ~  

KOUT - CODE TO S P E C I F Y  T H E  K I N D  O F  O U T P U T  D L S I R E D .  
0 - R E T U R N  ONLY T H E  S T E A D Y - S T A T E  S O L U T I O N  
K - R E T U R N  Y A F T E R  E V E R Y  K T I M E  S T E P S  UP TO 

S T E A D Y  S T A T E ,  WHERE K IS A N Y  f4ON Z E R C  I k T E G E R o  
SEE N O T E  UNDER FiEMARKS FOR T H I S  CASE. 

S U B R O U T I N E S  AND F U N C T I O N S  R E Q U I R E D  
M P R D t  MTRA, MADD, MSTR, MSUB9 SNORM, A 5 5  
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

MRDES L I S T I N G  CONTINUED 

REMARKS 
THE SUBROUTINE MRDES I S  A M O D I F I C A T I O N  OF A PROCEDURE PRESENTED 
BY ATHANS AND L E V I N E ,  M I T  ELECTRONIC SYSTEMS LABORATORY REPORT 
ESL-R-276, JULY, 1966, USING A RUNGA-KUTTA SCHEME- MRDES IS 
WRITTEN U S I N G  THE COMPRESSED STORAGE MODES OF THE I B M  SSP AND 
USES SEVERAL SSP SUBROUTINES- 

THE SOLUTION, Y ( T ) ,  I S  STORED I N  SYMMETRIC STORAGE MODE- 
S I N C E  THE SOLUTION I S  STORED I N  THE SAME LOCATION AS THE 
I N I T I A L  CONDITION, I T  I S  NECESSARY TO SAVE THE I - C a  I N  SOME 
OTHER LOCATION PRI0.R TO ENTRY I N T O  MRDES I F  THE I - C a  I S  TO 
BE RETAINED-  

I F  B = ~ D ,  ALL COMPUTATIONS I N V O L V I N G  B ARE S K I P P E D -  

T O  INCREASE THE DIMENSION O F  THE MATRIX EQUATION ABOVE 209 I T  
I S  ONLY NECESSARY TO CHANGE THE TWO CIME,NSION STATEMENTS FOR 
THE DUMMY ARRAYS TO VALUES O F  L AND NN RESPECTIVELY-  

SNORM I S  A SUBROUTINE TO O B T A I N  THE SUP-NORM OF AN NXN Y A T R I X  
STORED I N  ANY STORAGE MODE USED I N  I B M  SSP, BUT IS NOT ? A R T  
OF THE SSP SO I T  MUST BE PROVIDED BY THE USER- 

NOTE- I F  Y IS  TO BE RETURNED EVERY K T I M E  STEPS, THE M A I N  
PROGRAM MUST SET UP A LOOP TO RE-ENTER MRDES AFTER EACH RETURN- 
BE SURE NOT TO DISTRQY THE CURRENT VALUES OF THE SUBROUTINES 
ARGUMENTS BEFORE RE-ENTRY. ALSO THE M A I N  PROGRAM MUST CHECK 
THE FLAG, I b I A X ,  AFTER EACH RETURN- UPON RETURN, I F  IMAX IS 
GREATE2 THAN 1 RE-ENTER MRDESa I F  I M A X = O  OR 1, DO NOT REENTER. 
AN EXA;<IPLE O F  AT4 APPROPRIATE LOOP I N  A N A I N  PROGRAM I S  

MAIEJ P3OGRkW 

13 

11 

WHERE MXOUT I S  A SUBROUTINE FOR P R I N T I N G  THE MATRIX Y e  
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MRDES L I S T I N G  CONTINUED 

C METHOD 
C THE FOLLOWING RUNGA-KUTTA RECURSION FORMULA I S  USED 
C 
C Y ( K + 1 )  = Y ( K )  + [ G l ( K )  + 2 * G 2 ( K )  + 2 * G 3 ( K )  + G 4 ( K ) 1 / 6  
C 
C WHERE 
C G 1 ( K )  = H * ( A T * Y ( K )  + Y ( K ) * A  - Y ( K ) * B * Y ( K )  + C )  
C 
C G 2 ( K )  = H * ( A T * ( Y ( K )  + . 5 * G l ( K ) )  + ( Y ( K )  + . 5 * G l ( K ) ) * A  
C - ( Y ( K )  + . 5 * G l ( K ) I * B * ( Y ( K )  + . 5 * G l ( K ) )  + C )  
C 
C G 3 ( K )  = H * ( A T * ( Y ( K )  + . 5 * G 2 ( K ) )  + ( Y ( K )  + . 5 * G 2 ( K ) ) * A  
C - ( Y ( K )  + 0 5 * G 2 ( K ) ) * B * ( Y ( K )  + . 5 + G 2 ( K ) )  + C )  
C 
C G 4 ( K )  = H * ( A T * ( Y ( K )  + G 3 ( K l )  + ( Y ( K )  + G 3 1 K ) ) * A  
C - ( Y ( K )  + G 3 ( K ) ) * B * ( Y ( K )  + G 3 ( K ) )  + C )  
C 
C AND A T  REPRESENTS THE TRANSPOSE OF A. THE TIME STEP SIZE, H, 
C I S  CONSTANT. 
C 
C MRDES INCLUDES TWO TESTS FOR STEADY STATE. THE USER MAY 
C CHOOSE TO USE E I T H E R  OR BOTH. ONE TEST S P E C I F I E S  THE MAX 
C ALLOWABLE VALUE OF THE NORM OF THE D E R I V A T I V E  A T  STEADY STATE9 
C SNEo THE SECOND I S  A TEST FOR THE ALLOWABLE ERROR I N  THE NORM 
C OF THE SOLUTION AT STEADY STATE. THE USER S P E C I F I E S  THE PER 
C CENT ALLOWABLE ERROR I N  THE NORM OF Y I N  Y N ( l ) ,  1 . E .  001 
C PER CENT OF YNORM WOULD BE Y N ( l ) = O . O O l  0 THE SUBROUTINE 
C CHECKS THE PER CENT DIFFERENCE BETWEEN CURRENT YNORM AND 
C YNORM 10 T I M E  STEPS BACK. I F  THE CHANGE I S  LESS THAN THE 
C ALLOWABLE ERROR, THEN YNORM I S  COMPARED TO 3 AND 7 T I M E  STEPS 
C BACK. I F  THE CHANGE FOR 3 STEPS I S  LESS THANo3*(THE CHANGE FOR 
C 10 T I M E  STEPS) ,  AND FOR 7 STEPS I S  LESS THAN .6* (THE CHANGE 
C FOR 10 T I M E  STEPS) ,  THEN I T  I S  CONSIDERED STEADY STATE. 
C 
C THE USER MUST SPECIFY A M A X  NUMBER OF ITERATIONS, I M A X ,  I N  CASE 
C NEITHER STEADY STATE TESTS ARE S A T I S F I E D  I N  A REASONABLE T I M E  
C 
c **********************~***~***********************~**************** 
C 

SUBROUTINE M R D E S ( A , B ~ C r Y , N 9 H , S N E , Y N , f M A X r I A C T r K O U T )  
DIMENSION A ( 1 1 ,  B I l ) ,  c ( 1 ) 9  Y ( 1 1 ,  Y N ( 1 0 )  

C 
C THE FOLLOWING DUMMY ARRAYS ARE ONLY USED W I T H I N  THE SUBROLTINE. 
C 

D IMENSIOf i  X ( 2 1 O ) , X B X ( 2 1 0 ) , G G ( 2 1 0 )  ,GSUM(210)  
DIMENSION X A ( 4 0 0 ) r  A X ( 4 9 O ) r X B ( 4 0 0 )  
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1 

2 
3 

a 
9 

C 
C 
C 
C 

10 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

11 

C 
C 
C 
C 
C 

M R D E S  L I S T I N G  C O N T I N U E D  

NN=N*N 
L=N* ( N+1) /2 
K K = O  
I F ( I A C T ) 1 , 1 , 3  
Y N E = Y N (  1) 
Y N O R M z l o  
DO 2 1=1,10 
Y N (  I ) = l O o * * I  
C O N T I N U E  
C A L L  S N O R M ( B , B N O R M ~ N , l )  
KK= K K+ 1 
I A C T = I A C T + l  

THE A R R A Y S  X AND GG WILL BE U S E D  TO R E P R E S E N T  S U C C E S S I V E L Y ,  Y, 
Y+o5G1,  Y+o5G2,  Y+G3, AND G l r  G 2 9  G3, AND G 4  R E S P E C T I V E L Y .  

DO 10 I=l ,L 
X ( I ) = Y ( I )  
DO 40 J=1,4 

COMPUTE A*X + X*A AND STORE I N  AX T E M P E R A R I L Y .  

C A L L  M P R D (  X,A ,XA, N ,N 9 1 $0 ,N 1 
C A L L  MTRA(XA,AX,N,N,O) 
C A L L  MADD( AX,XA,AX,N,NIO,O) 

S T O R E  A X  + X A  (NOW I N  A X )  I N  S Y M M E T R I C  STORAGE MODE A N D  C A L L  I T  GG 

C A L L  M S T R (  AX ,GG ,N 90 9 1) 

COMPUTE GG= A*X +X*A + C 

C A L L  MADD( GG,C ,GG 9N ,N 9 1, 1) 

I F  NORM OF B I S  ZERO,  B Y P A S S  C O M P U T A T I O N S  I N V O L V I N G  Bo 

I F (BNORM 1 13  9 13  9 11 
C A L L  MPRD(X,B,XB,N,N, l , l rN) 
C A L L  MPRD(XB,X,XA,N*N,O9l,N) 

T H E  PRODUCT X*B+X I S  T E M P E R A R I L Y  S T O R E D  I N  X A o  T H E  M A T R I X  X*B*X 
S H O U L D  BE S Y M M E T R I C  B U T  ROUND OFF ERRORS MAY C A U S E  I T  T O  BE 
S L I G H T L Y  U N S Y M M E T R I C A L .  I T  IS MADE S Y M M E T R I C  BELOW. 

C A L L  MTRA(XA,AX,NqN,O) 
C A L L  MADD(XA,AX,XA¶N,N,O,O) 
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M R D E S  L I S T I N G  C O N T I N U E D  

DO 1 2  I= l ,NN 
12 X A (  I ) = o 5 * X A (  I) 

C 
C S T O R E  X*B*X (NOW I N  X A )  I N  S Y M M E T R I C  STORAGE MODE A S  X B X o  
C 

C 
C COMPUTE GG= A*X + X*A - X*B*X + C 
C 

C A L L  MSUB(GG,XBX,GG,N,N,1,1) 
C 
C T E R M I N A T E  I F  NORM O F  D Y ( T ) / D T ,  W H I C H  I S  G I V E N  H t R E  A S  GG ( J = l ) ,  
C I S  LESS T H A N  T H E  A L L O W A B L E  L I M I T  A T  S T E A D Y  S T A T k ,  SNEo 
C HOWEVER, T E R M I N A T E  A F T E R  T H I S  I T € R A T I O N o  
C 

C A L L  MSTR(XA,XBXIN,O,~)  

1 3  IF(J-1)14,14,18 
1 4  C A L L  SNORM(GG,GNORb l ,N I l )  

C 
C FOR J=l, X I S  E Q U A L  TO Y AND FOR J=2,3,AND 4 T H E  F O L L O W I N G  L O G I C  
C SETS X E Q U A L  TO Y + o 5 G 1 ,  Y+o5G2,  AND Y+G3 R E S P E C T I V E L Y o  GG T A K E S  
C ON T H E  V A L U E S  O F  G I ,  G2, G 3 9  AND G 4  S U C C E S S I V E L Y  A S  J=1,2,3,40 
C 

1 8  I F ( J - 2 1 2 0 , 2 5 9 1 9  
19 I F (  J - 4 1 3 0 , 3 5 9 3 5  
2 0  DO 2 1  I = l , L  

GSlJM( I ) = G G (  I ) * H / 6 o  
C 
C H E R E  H * G G = G l  AND X = Y + o 5 G 1  
C 

2 1  X (  I ) = Y (  I )+oS*H*GG(  I) 
GO T O  40 

2 5  DO 2 6  I = l , L  
GSUMf  I ) = G S U M (  I ) + G G (  I ) * H / 3 o  

C 
C H E R E  H*GG=GZ AND X = Y + o 5 G 2  
C 

26 X ( I ) = Y ( I ) + o 5 * H * G G I I )  
GO T O  40 

30 DO 3 1  I= l , L  
G S U M ( I ) = G S U M (  I ) + G G ( I ) * H / ? o  

C 
C H E R E  H*GG=G3 AND X=Y+G3 
C 

3 1  X (  I ) = Y (  I )+H*GG( 1 )  
GO TO 40 

35 DO 36 I = l , L  
36 Y(I)=Y(I)+GSUM(I)+GG(I)*H/6o 
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i4RGES L I S T I N G  CONCLUDED 

IF(SNE-GNORM)40,45,45 
43 CONTINUE 

C 
C CHECK THE CHANGE I N  THE NORM O F  Y OVER 10 T I M E  STEPS. 
C 

00 401 I=1,9 
I O = l O - I  
I I=11-I 

YN ( 1) =YNORFl 
C A L L  SNORM(Y,YNORM,N,l) 
TESTEARS( l - Y N (  10) /YNORM) 

401 Y N ( I I ) = Y N ( I O )  

C 
C TERYINATE I F  THE VORM OF Y TEST I S  S A T I S F I E D .  
C 

I F ( T E S T - Y N E ) 4 0 2 , 4 0 2 , 4 1  
4 3 2  I F ( A B S (  l - Y N (  3 ) / Y N O K ? * l ) - o 3 * T E S T ) 4 0 3 , 4 0 3 , 4 1  
4 0 3  I F ( A e S [ l - Y N ( 7 ) / Y N O R M ) - o 4 * T E S T ) 4 5 , 4 5 , 4 1  

C 
C CHECK THE K I N D  OF OUTPUT DESIRED, I F  KOUT=Oq CONTINUE COIV;?UTING 
C AND RETURN ONLY THE STEADY STATE VALUE OF Y o  I F  KOUT=Kg C3MPUTE 
C FOR K T I M E  STEPS THEN RETURN Y o  

C 
4 1 
4 2  I F ( K O U T l 9 , 7 , 4 3  
4 3  I F ( K O G T - K K ) 5 0 , 5 0 ~ 8  

I F ( I A C T -  I M A X  1 4 2  9 46 9 46 

C 
C U S E  I M A X  AS A F L A G  TO I N D I C A T E  THAT E I T H E R  IACT=IMAX OR STEADY 
C STATE i lAS i3EEN REACHED, BY S E T T I N G  I M A X = O  I F  STEADY STATE 9 OR 
C Ib’AX=1 I F  I A C T = I Y A X ,  2RIOR TO THE F I N A L  RETURN. 
C 

45  I b I A X = L )  

4 6  I Y , A X = 1  
50 RETURN 

END 

GO T O  5 G  
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C 
- C  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

******************************************************************* 
HERMAN A. REDIESS, M I T ,  DEPT. O F  AERONAUTICS AND ASTRONAUTICS 
MARCH 1968 

SUBROUTINE SNORM 

PtJRPOSE 
COMPUTES THE SUP-NORM OF AN NXN M A T R I X  OR AN N X 1  VECTOR. 

USAGE 
C A L L  SNORM(A,B,N,MS) 

OESCRIPTION O F  PARAMETERS 
A - NAME OF MATRIX OR VECTOR 
B - NAME OF THE SUP-NORM OF A 
N - DIMENSION OF A 
M S  - ONE D I G I T  NUMBER FOR STORAGE MODE OF A 

0 - GENERAL 
1 - SYMMETRIC 
2 - DIAGONAL OR VECTOR 

FUNCTIONS REQUIRED 
ABS 

SUBROUTINE SNORM(A,B,N,MS) 
DIMENSION A (  1) 
0=0. 
I F ( M S - 1 ) 1 0 ~ 1 1 ~ 1 2  

10 L=N*N 
GO T O  1 5  

11 L = N * ( N + 1 ) / 2  
GO TO 1 5  

1 2  L = N  
15  DO 20 I= l ,L  

18 B = A B S ( A (  I) 1 
20 CONTINUE 

RETURN 
END 

I F ( A B S ( A (  I) k B I 2 G 9 2 0 9 1 8  
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C 
C 
C 
C 
C 
€ 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

HERMAN A o  REDIESS, M I T ,  DEPTo O F  AERONAUTICS AND ASTRONAUTICS 
MARCH 1968 

SUBROUTINE DIRCOS 

P I J  R POSE 
COMPUTES THE LENGTH AND D I R E C T I O N  COSINE5 OF A VECTOR 

USAGE 
CALL DIRCOS(A,B,DC,N) 

DESCRIPTION OF PARAMETERS 
A - NAME OF VECTOR 
B - LENGTH O F  VECTOR A 
DC - VECTOR CONTAINING THE OIRECTIONAL COSINES O F  VECTOR A 
N - DIMENSION O F  VECTORS A AND DC 

FUNCTIONS REQUIRED 
SQRT 

SUBROUTINE DIRCOS(A,B,DC,N) 
DIMENSION A (  11 9 D C (  1) 
C=O. 
DO 10 I = l , N  

10 C=C+A( I ) * A (  I) 
B=SQRT ( C 1 
DO 11 I = l , N  

11 DC(I)=A(I)/B 
RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HERMAN A e  REDIESS, M I T t  DEPTe OF AERONAUTICS AND ASTRONAUTICS 
JUNE 1968 

SUBROUTINE CALSYS MOD 1 

COMPUTES F, AT, RT, X O ,  Q ,  AND HTQ FOR CURRENT VALUE OF PAR. T H I S  
SUBROUTINE IS ONLY V A L I D  FOR SYSTEMS I N  CANONICAL (PHASE V A R I A B L E )  
FORM. 

SUBROUTINE C A L S Y S ( F , A T , B T , X O , A L P H A , Q , H T Q , P A R )  
C 

C 

C 
NN=N*N 
M I = M + l  
NM=N-M 
NM I =NM+ 1 
NMJ=NM+Z 

C 

C 

DO 10 I = l r K  
10 P ( I ) = P A R ( I )  

L = l  

PAR ( L 1 = 1. 1*P ( L 1 
11 CONTINUE 

NUM=O 

1 2  CONTINUE 

CALL COEF(ACOF9BCOF9PAR) 

X O ( l ) = - B C O F ( l ) / A C O F ( l )  
DO 2 2  I=2,NM 

X O ( N M I ) = B C O F ( M I  1 
DO 2 5  I=NMJ,N 
C = O * O  
I I=I-1 
N I  = N - I + 2  

2 2  X O ( I ) = O m O  
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CALSYS MOD 1 LISTING CONTINLJED 

24 
25 

C 

C 

C 
26 

27 

28 

C 
29 

30' 

DO 24 J=NMI,II 
JN=J+N- I +1 
C=C-ACOF( JN)*XO( J) 
XO(I)=BCOF(NI)+C 

NUM=1 
DO 28 I = l , N  
ZKL=( I-l)*K+L 
AT(IKL)=ACOF( I )  
B T (  IKLl=XO( I )  
CONTINUE 
PAR( L)=o9*P(L) 
GO TO 12 

C 
40 CONTINUE 

41 F( I)=O09 
DO 41 I=l,NN 

DO 42 1=29N 
J=(I-l)*IN+l) 

DO 43 I=19N 

43 F ( IN)=-ACOF ( I )  

IF(N-LI 1 44,50950 

42 F ( J ) = l . O  

IN=I*N 

C 

C 
44 DO 45 I = 1 9 N  
45 AVEC(I)=ALPHA(I)-ACOF(I) 

DO 47 I=l,LI 
NI=N*(I-l) 
DO 46 J=l,N 
JI=J+NI 

46 HTQ(JI)=AVEC(J)+ALPHA( I )  
47 CONTINUE 
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CALSYS MOD 1 LISTING CONCLUDED 

C 
IC=1 
DO 49 I=lrN 
IL=I*( I+1)/2 
DO 48 J=ICrIL 
JI =J+1- IC 

IC=IL+l 
48 Q(J)=AVEC( I)*AVEC(JI) 

49 CONTINUE 

50 RETURN 
EN D 

C 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
€ 
C 
C 
C 

c 

HERMAN A. REDIESS, N I T ,  DEPT. OF AERONAUTICS AND ASTRONAUTIC5 
AUG. 1968 

***++******* **********%-%***** ...................... %****************** 
SUBROUTINE CALSYS MOD 2 

FOR WEIGHTED AVERAGED PSEUDO I C  VECTOR APPROACH TO M U L T I V A R I A B L E  
SYSTEM DESIGN 

COMPUTES F, AT, BT, X O ,  Q, AND HTQ FOR CURRENT VALUE OF PAR. T H I S  
SUBROUTINE I S  ONLY V A L I D  FOR SYSTEMS I N  CANONICAL (PHASE V A R I A B L E )  
FORM. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CALSYS(F,AT,BT,XO,ALPHA,W,HTQ,PAR) 

C 

C 
NN=N*N 
M I  =M+1 
NM=N-M 
N M I  =NM+ 1 
NMJ=NM+2 

C 

C 

C 

C 

DO 10 I = l , K  
10 P ( I ) = P A R ( I )  

L = l  
11 CONTINUE 

PAR ( L ) = I o  I * P (  L 1 
NUM=C) 

1 2  CONTINUE 

I A = l  
C A L L  COEFl(ACOF,ECOF,PAReCC) 
GO TO 14 

1 3  C A L L  COEF2(BCOF,PAR,CC) 
I A = 2  

14 CONTINUE 
C 

X O ( l I = - B C O F ( l ) / A C O F ( l )  
DO 22 I = 2 9 N M  

22  XO(I)=O.O 
X O ( N M I ) = B C O F ( M I )  
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C A L S Y S  MOD 2 LISTING CObiTINUED 

DO 25 I=NMJ,N 
C=O.O 
I I = I - l  
NI=N-I+2 
DO 24 J=NMI,II 
JN=J+N-I+l 

24 C=C-ACOF(JN)*XO(J) 
25 XO(I)=BCOF(NI)+C 

C 
C A L L  DIRCOS(XO,XLEN,XO ,N) 
IF(IA-11250,250,252 

250 GO 251 I=l,N 

GO TO 13 
252 DO 253 1=3. ,N 

251 CXO( I )=CC*XO( I) 

253 XO(I)=CXO(I)+CC*XO(I) 
C 

C 

C 

IF(L-K)26,26,40 

26 IF(NUM-1)27,29,29 

27 NUM=1 
DO 28 I=l,N 
IKL=( I-l)*K+L 
AT( IKL)=ACOF( I )  
BT(IKL)=XO(I) 

28 CONTINUE 
P A R (  L )=*9*P ( L 1 
GO T O  12 

29 DO 30 I=l,N 
C 

IKL=( I-l)*K+L 
AT(IKL)=(AT(IKL)-ACOF(I))/(o2*P(L)) 
BT(IKL)=(BT(IKL)-XO(I))/(o2~P(L)) 

30 CONTINUE 
PAR ( L 1 =P ( L) 
L=L+1 
IF(L-K) 11,11,12 

C 
40 CONTINUE 

41 F( I)=O03 
DO 41 I=l*NN 

DO 42 I=2,N 
J=( I-l)+(N+l) 

42 F(J)=loO 
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46 HTQ(JI)=AVEC(J)*ALPHA( I )  
47 CONTINUE 

IC=1 
DO 49 I=l,N 
IL=I+( I+1)/2 
DO 48 J=ICIIL 
J I =J+l-IC 

IC=IL+l 

C 

48 Q(J)=AVEC( I)*AVEC(JI) 

49 CONTINUE 

50 RETURN 
END 

C 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
c 
C 
C 
c 

C 

c 
C 
C 
C 

C 

HERMAN A. REDIESS, N I T ,  DEPTo OF AERONAUTICS AND ASTRONAUTICS 
JlJNE 1968 

SUBROUTINE CALSYS MOD 3 

COMPUTES F, AT, BT, AND XO FOR CURRENT VALUE OF PAR FOR THE MODEL- 
REFERENCED I S E  DESIGN METHOD W I T H  F AND XO P A R T I T I O N E D  AS 

dHERE F(MOL>EL) AND F ( S Y S )  ARE I N  CANONICAL (PHASE V A R I A B L E )  FORM. 

SUBROUTINE CALSYS(F,AT,BT9XO,ALPHA,Q,HTQ,PAR) 

COMPUTE XO(MODEL), I o E o  THE F I R S T  NM ELEMENTS OF XOo 

C A L L  COEF:4 ( ALPHA9 BETA ,NM,MM 1 

C 

19 

20 

2 1  

NN=N*N 
MMI=MM+l 
NMM=NM-MM 
NMMI=NMM+l 
NKMJ=NMM+Z 

X O ( l ) = - B E T A ( l ) / A L P H A ( l )  
IF (NM-1)220 ,220 ,19  
CONT I NU€ 
DO 20 I=2,NMM 
XO( I )=a00 
X O ( N M M I ) = B E T A ( M M I )  
DO 22 I=NMMJ,NM 
C=O.O 
I I=I-1 
N I  =NM- I +2 
DO 2 1  J=NMMI 9 I I 
JN=J+NM-I+ l  
C=C-ALPHA( JN) *XO(  J)  
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CALSYS MOD 3 LISTING CONTINUED 

C 
C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

22 XO(II=BETA(NI)+C 
220 CONTINUE 

COMPUTE AT AND BT, AND COMPLETE XOo 

NMK=NM*K 
NM I =NM+1 
NM J= NM+ 2 
NMS=N-MS 
NMSI=NMS+l 
NMSJ=NMS+Z 
MSI=MS+l 

DO 24 I=19K 
24 P( I )=PAR( I) 

L=l 

PAR(L)=Ie1*P(L) 
25 CONTINUE 

NUM=O 

26 CONTINUE 

CALL COEF(ACOF,BCOF9PAR) 

XO(NYI)=-BCOF(~)/ACOF(~) 
DO 27 I=NhiJ9NMS 

XOlNMSI)=BCOF(MSI) 
DO 30 I=NMSJ,N 
c=o.o 
II=I-1 
NI=N-I+2 
DO 28 J=NMSI,II 
JN=J+N-NK- I +1 

2 8  C=C-ACOF(JN)*XO(J) 
30 XO(I)=BCOF(NI)+C 

27 X O ( I ) = O e O  

IF( L-K) 319 31 940 
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CALSYS MOD 3 LISTING CONCLUDED 

3 2  NUM=1 
DO 3 3  I=NMI,N 
IKL=( I-l)*K+L 
I NM= I-NM 
AT( IKL)=ACOF( INM) 
BT( IKL)=XO( I )  

3 3  CONTINUE 

GO TO 26 
PAR(L)=Oo9*P(L) 

C 
35 DO 36 I=NMI,N 

IKL=(I-l)*K+L 
I NM= I -NM 
A T ( I K L ) = ( A T ( I K L ) - A C O F ( I N M ) ) / ( O . 2 * P ( ~ ) )  
BT( IKL)=(BT( IKL)-XO(I) )/(Oo2*P(L)) 

36 CONTINUE 
PAR( L ) = P  (L) 
L=L+1 
If(L-K)25,25,26 

C 

C 
C COMPUTE THE PARTITIONED COEFFICIENT MATRIX, F o  
C 

40 CdNTINUE 

DO 4 1  I=l,NN 

1 F (NM-11423942O ,410 

DO 42 I=2rNM 
J=( I-l)*(N+l) 

41 F(II=OoO 

410 CONTINUE 

42 F(J)=loO 
420 CONTINUE 

DO 43 I=lrNM 
INM=( I-l)*N+NM 

43 F (  INhl)=-ALPHA( I )  

GO 44 I=NMJ,N 
C 

J= ( 1-1 1 * (N+1) 
44 F(J)=leO 

DO 45 I=NMI,N 
IN=I*N 
I R;M= I -NM 

45 F( IN)=-ACOF( INM) 
C 

RETURN 
END 
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,AN EXAMPLE OF SUBROUTINE COEF 

SUBROUTINE COEF(ACOF,BCOF,PAR) 

DIMENSION ACOF(1)r RCOF(1lr PAR411 
C 

C 

C 
PAR(4)=OoO 

BCOF(l)= 000 
5COF(2)= -15001069-6074563*PAR(3)  
BCOF ( 3 I= 
BCOF(4)= -5023896+6074579*PAR(Z~+Oo0279*PAR(3 )  
BCOF(5)= -5,116 

ACOF(1)=-00006235-oO004162*PAR(3) 
A C O F ~ 2 ~ ~ 0 1 7 9 6 8 ~ 1 5 o 0 1 ~ 6 * P A R ~ l ~ ~ o O 3 2 8 7 * P A R ~ Z ) + o O 6 8 0 3 8 * P A R ~ 3 ~  

-15013365+00 1178*PAR( 2 1-607 1773*PAR( 3 1 

C 

1 - 6 0 1 4 4 9 * P A R ( 4 ) - 6 0 7 4 5 6 * P A R ( 3 )  

1 ~ 6 0 2 5 1 6 * P A R ~ 4 ) + 0 1 1 7 7 ~ * P A R ~ 2 ) - 6 . 7 3 2 9 * ~ A R ~ 1 ~ * P ~ R ~ 3 ~  

1 ~ 2 ~ 4 3 1 6 * P A R ~ 4 1 + 6 0 7 4 5 8 ~ P A R ~ 1 ~ * P A R ~ 2 ~ + 0 0 1 2 7 9 * ~ A ~ ~ 1 ~ * P A R ~ 3 ~  

A C O F ( 3 ) = 3 0 1 2 8 5 - 1 5 o 1 3 3 6 * P A R ~ l ~ ~ o O O O 4 9 4 l * P A R ~ 2 ~ + 1 ~ ~ 1 2 7 * ~ A R ~ 3 ~  

ACOF(4)=30O453-50239*PAR(l)-o~O53~*PAR(2)+104293*PAR(3) 

A C O F ~ ~ ) ~ ~ O ~ ~ ~ ~ ~ ~ O ~ ~ ~ * P A R ( ~ ~ ~ ~ ~ ~ ~ Z * P A R ~ ~ ~ ~ O O ~ ~ ~ * P A R ~ ~ ~ ~ Z O ~ ~ ~ * P A R ~ ~ ~  
C 

RETURN 
END 

AN EXAMPLE OF SUBROUTINE DELPC 

SUBROUTINE DELPC(GPC,PIPCIPAR,RPC) 

DIMENSION GPCtlIt PAR(11 
COMMON NsM,K,LI 

C 

C 
SQ=OoO - 
DO 10 I=l,K 
SQ=SQ + PARII)+PAR[I) 

10 GPC(I)=2oO*RPC*PAR(I) 
C 

C 
PIPC=RPC*SQ 

RETURN 
EN 0 
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